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PREFACE

In days gone by, hypervelocity flight in planetary atmospheres primarily concerned entry into the

atmosphere and descent to the ground. But in recent times, the discipline has been broadened in two
directions. The first concerns reusable flight configurations that are primarily space vehicles which use

the upper layers of an atmosphere to perform hypervelocity aerodynamic maneuvers to change orbital

altitude, orbital plane inclination angle, aerocapture on return from another planet, or rendezvous with

another space vehicle. The second direction involves vehicle concepts that fly from the ground into orbit

by use of air-breathing powered lift. The former is often referred to as an aeroassisted orbital (or space)
transfer vehicle (AOTV) (or ASTV) which skips out of the atmosphere and returns to space after the

aeromaneuver that was performed during the shallow dip into the upper atmosphere. These vehicles can

greatly enhance space payloads because they replace a very costly (in terms of fuel weight) propulsive
maneuver with an aerodynamic maneuver. These aeromaneuvering concepts enhance the utilization of

space for scientific, commercial, national, and international purposes.

Alas, however, it has come to be that hypervelocity flight is almost a dead language--to a con-
siderable extent, the national institutional memory is failing. In order to guard some of what we have

learned, a series of graduate-level courses has been reintroduced. This monograph is an outgrowth of
that effort. It contains material that I presented in a series of lectures in 1967 at Stanford University, and

began to repeat in 1986. It was apparent to the students in 1986 that the material was reassembled on
short notice, consisted largely of work that I was involved with over the years (as a matter of conve-

nience-with no intent to slight the work of many others), and was attended by considerable difficulty

for me and surely for the students. It was written in barely legible longhand on the chalkboard. More

serious, over the years notebooks and technical papers had been misplaced because of carelessness; the

burden of administrative duty that dealt in personpower, budgets, and partially realized plans; and

because of many moves by me within NASA, including the worst case--a 2-year assignment to NASA

Headquarters in Washington, DC. Thus, for example, my notebook on nonneutral gas effects was found

by happenstance in the garage of a friend--a week before the lectures began.

The lectures were televised in 1987 and 1988, which limited my use of the chalkboard and

allowed me to be seated most of the time. Moreover, two previous students, Bertrand Delmas-Marsalet

and Frederic Laurent Chalot, had prepared a succinct version of the class material by use of a word

processor, which I tried to flesh out by use of a portable typewriter. Thus in every way, the lectures in

1987 were improved--or so it seemed to me. In 1989 the Stanford class was unusually responsive and
this resulted in some modifications to the text and the addition of some supplemental material.

Thus the current text includes the previous material, but has been expanded to include some brief

considerations of one-dimensional compressible flow without transport phenomena early in Chapter 2,

more detailed treatment of thermodynamic and transport property correlations in Chapter 5, flight in

atmospheres of other planets, very severe flight environments (Chapter 9), explanatory material inserted

where appropriate throughout the text, and additional material about hypervelocity flight at high altitude

in Chapter 11.

Finally, it is important that the formalism described here can be extended rigorously to include
the effects of thermodynamic nonequilibrium in hypervelocity flight. This is significant because the

level of approximation can be defined. New developments can be included systematically in such a way
that new terms in the equations of change can be sized in a self-consistent way, important terms can be

identified and retained (and terms of lesser importance can be neglected--a significant advantage). Thus
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one can proceed in a meaningful way and avoid nonessential efforts and the confusion attending ad hoc

approximations. This is of significant advantage for future extensions of the analytical treatment.

John T. Howe

1990
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•..keep that which is committed to thy trust, avoiding the profane and

vain babblings and oppositions of science falsely so called which some by

professing have erred concerning the faith... .

V
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CHAPTER 1

INTRODUCTION, CONTENT, AND APPROACH

The purpose of this monograph is simple to state. We intend to develop the equations that

describe the flow over an object in hypervelocity flight; assess the relative importance of all of the terms

in the equations (and neglect those that are of lesser importance); describe the terms that treat the rele-

vant, highly energetic, real-gas phenomena; solve the set of equations to obtain results, and examine
those results to form some mental notions of trends and effects important to hypervelocity flight. We

will examine the very severe flight environment of the Jupiter (or other planetary) atmosphere. Finally,

some consideration will be given to flight at very high altitude where the flow field is relaxing chemi-
cally and even thermodynamically at finite rates. It is important to state this because there is some dan-

ger of forgetting what we are about in the process of developing the subject.

Thus we will also find ourselves trying to map flight domains in which particular phenomena are

important. To the extent possible, we will be forming notions about those processes that will be most

sensitive and those that will be relatively insensitive--before the problem is solved. That is a good thing
to do.

Some of our flight experience in the Earth's atmosphere is depicted in figure 1-1, which shows

flight regimes in terms of altitude and velocity. On the lower left is a line that represents the flight of the

supersonic Concorde. By contrast, as the monograph title suggests, we are primarily concerned with

flight toward the right of the figure--hypervelocity flight. We say hypervelocity rather than hypersonic.
The former includes both compressible and energetic real-gas effects, while the latter primarily denotes

105 - 350

90 - 300

75 - _ 250

60 - _ 200

E x
W
a

45 - _ 150
/

: J

30i- < 100

i

11i- 50
0

AEROASSIST FLIGHT EXPERIMENT HIGH-LIFT AOTV

LOW LIFT AOTV _ (45 _- LEO PLANE CHANGE)

COPLANARGEO_LEO H _ _ /
_ _ _., ._._ / , FAR

REAL GAS EFFECTS _._ _ / SOLAR

,MPORTANT: MARS n
MORE THAN 10% NASP _ _ RETURN II n,r..un.
DISSOCIATED /STS\_ " , _ \ _1 J

T°oo.o,.......,\ll/  ,,ooo 
-_, _ .i l _, Ilvlv__, u i _ nvu u ,.,,P-o-

\, _ --i -_--_--_ , NONEQUILIBRIUM II \.,
"1 ---- ---- / IONIZATION-- , , /
/ --- --- --" ...... _; '5/ / I I

_ _ APOLLO /" PRIBRAM

.,.- / METEOR
\0 2 N2\. PEAK • U /

(_ \" \ HEATING / 15 000 K

HYPERSONIC AIRPLANE

40_NCORDE

I 1 I [ 1 [

10 20 30 40 50 60

VELOCITY X 10-3, ft/sec(APPROXIMATE MACH NUMBER)

10-7

10-6

10-5

/

10-4 o

>:
10-3 J-

z
uJ

10_ 2

10-1

10

I 1 I I I I I /_....t__

0 3 6 9 12 15 18 20
km/sec

Figure 1-1.- Comparison of vehicle flight regimes in Earth's atmosphere.



compressibility effects--which can occur in a very cold gas that has little energy content per unit mass

of gas (low enthalpy, if you will). Thus, atmospheric flight at Mach 10 is only 15% as energetic as entry

flight from low Earth orbit. For reference, low Earth orbit circular satellite speed is approximately

7 km/sec. The figure shows domains, trajectories, and some lines that approximately bound some physi-

cal and chemical flow-field phenomena associated with hypervelocity. Note four such lines. To the right

of the lines labeled 02 and N2, 10% or more of the oxygen and nitrogen molecules in the air behind a

normal shock wave are dissociated to form atoms. To the right of the double vertical line at about

9 km/sec, electrons are stripped from the atoms and molecules to a significant extent, and ionization

effects become important. Finally, at an altitude above about 50 km, the frequency of collisions among
air particles is diminished to the extent that the rate at which physical and chemical processes proceed

must be considered. That is, the air may be out of equilibrium chemically and thermodynamically, or

both. This is the real world of hypervelocity flight. We will have occasion to refer to and modify this
figure in more detail subsequently. For reference purposes, pressure and temperature contours for air in

chemical equilibrium behind a normal shock wave are shown in figure 1-2 as a function of flight speed

and altitude (adapted from ref. 1).
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Figure 1-2.- Pressure and temperature contours for air in chemical equilibrium behind a normal shock
wave (ref. 1).

Phenomenologically, in describing real-gas flows over objects in hypervelocity flight in an atmo-

sphere, we must deal with the above phenomena and other effects of the dissipation of the kinetic energy

of the probe in the atmosphere--energy that is often sufficient to vaporize the probe. Thus the flow field

may be complicated by the presence of gases that have vaporized from the probe surface, and in extreme

cases by solid particles that have spalled from the surface because of thermal stress in the probe mate-

rial. Even at that, the surface temperature is generally much lower than the gas temperature behind the

shock wave. Thus a flow-field energy equation which treats real-gas thermal phenomena is essential.

Often the energy equation is strongly coupled to the momentum equation because velocity terms are

common to both, and the energy level is related to velocity squared. On the other hand, the solution of

the momentum equation is not always greatly affected by the corresponding solution of the energy

equation. Sometimes momentum equations can be solved without an energy equation to yield shock

shapes and pressure distributions that bear some resemblance to real flight---depending on the domain
and how particular we are.



Sincethekinetic energyimpartedto theatmosphereby ahypervelocityvehicleis largeenough
to breakmolecularbondsor displaceelectrons,wemustconsiderchemicallyreactingflows (andalso
thepossibilityof electricfields andtheireffects)evenatsomedistanceremovedfrom thedisplaced
electron.Moreover,in someregionsof theflow, thegastemperatureexceedstheapparenttemperature
of theSun,andwesuspectthattheemissionandtransferof thermalradiationshouldbeconsideredin
thegas--which maybecomplicatedbychemicalreactionsthatgiverise to local sourcesandsinksof
energy.

Nevertheless, it is very important that we not consider the analysis of a hypervelocity flow field
to be intractable; it actually involves a number of scientific disciplines that are tractable--fluid dynam-

ics; chemical kinetics; electrodynamics; transport of mass, momentum, energy, chemical species, and

surplus charge; and radiative transfer. Further, we must consider local thermodynamic nonequilibrium--
do we need more than one local temperature to characterize the gas mixture? It appears that it is

necessary under some circumstances.

The task of developing each discipline or each line of thought in detail in one small monograph

is out of the question. Thus we are compelled to introduce each discipline at the subjective point where

it suits our purpose, combine these interrelated physical and chemical phenomena in a tractable way, and
terminate it at a reasonable point. We will leave further development of this continually emerging sub-

ject to those with greater perception--to the students during their careers.

Specifically, we adopt the following approach. Rather than begin with the Boltzmann equation,

we begin with the hydrodynamic equations, or "the equations of change" which can be derived from the
Boltzmann equation (refs. 2, 3). Nor do we take moments of that equation to obtain transport expres-

sions, but use the Chapman-Enskog result (refs. 2-4)--or something akin to it. This is not to minimize

the important of the formalism which will be developed by use of the equations of change. It is a tool

that has many advantages which cannot be overemphasized. It is compatible with incompressible, sub-

onic, supersonic, hypersonic, and hypervelocity flows. It is self-consistent and it yields expressions for

real gas behavior. It is useful for evaluating phenomenological compatibility (a charged gas will be

shown to be compatible with the Navier-Stokes equations--although it was thought not to be by some

authors). It enables us to express terms in the governing equations in a way wherein we can rank the size

and importance of each. Some terms are interesting but negligible and we do not need to expend the

effort to study them. The formalism allows various levels of approximation to be formed and provides
the constraints that limit their use. Finally, it is extendable to even more severe thermochemical con-

ditions than are considered here in a manner that is self-consistent and consistent with all that has pre-
ceded that extension. It is a remarkable tool. Moreover, our treatment of radiative transfer theory is not

derived from quantum notions, but rather from developments from stellar literature (which surprisingly
can be shown to have been developed independently by the paint and paper industry). Almost exclu-

sively, we adopt the macroscopic approach obtained from the results of kinetic theory--and say very
little about that theory. When at last we begin to invade the inner privacy of atoms and molecules

explicitly, we will say a few words and draw a few lines and withdraw with our sensibilities partially
intact. That invasion is a subject to be dealt with separately. All that we need to know is where in the

flight domain it becomes important, and understand some features of that domain in an approximate
way. Thus if the reader or student has a nodding acquaintance with compressible fluid mechanics, and a

reasonable tolerance for pain, he or she is qualified to begin.
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CHAPTER 2

SOME USEFUL COMPRESSIBLE FLOW RELATIONS FOR AN IDEAL GAS

It will be helpful subsequently to have some simple relationships concerning compressible flow

to refer to. The steady one-dimensional flow of an ideal compressible gas in a constant-area duct
wherein there is no transport of mass, momentum, energy, or chemical species should be familiar to the

reader (ref. 1). Let us consider a normal shock wave in the duct and allow the molecular nitrogen of the

approaching gas flow to be altered chemically as it crosses the shock wave such that downstream the gas
is a mixture of molecules, atoms, ions, and electrons which are the product of chemical reactions that

occurred as the gas crossed the shock wave.

Poo, uoo, Poo, hoo, Too

UNDISTURBED ATMOSPHERE

COMPOSITION N2

Ps, Us, Ps' hs' "Is

SHOCKED GAS

N2, N, N;, N +, e-

SHOCK WAVE

Figure 2-1.- Thermodynamic and chemical change across a normal shock.

That flow is depicted in figure 2-1, and is described by equations of the continuity of mass (where p is

gas density and u is the gas velocity).

pu = constant (1)

The momentum balance (where p is the pressure and x is the one-dimensional coordinate) is

pu du _ dp (2)
dx dx

This is a form of the Euler equation which is related to the zeroth-order perturbation of the Boltzmann

equation. It is one-dimensional steady state, without viscous or body forces. Its integrated form is

pu 2 + p = constant

The simple energy equation (where h is the static enthalpy, and H is the total enthalpy) is

h + u2 = H = constant
2

The static enthalpy for a component species of a perfect gas is related to the temperature, T, by

(3)

(4)

5



T
hi(T) = Cpi dT+ hio (5)

where Cpi is the specific heat at constant pressure, and hio is the heat of formation of that component
of the gas at a reference temperature (zero, for example). The enthalpy of the gas mixture of v compo-

nents or species is simply

h =E cihi (6)
i=l

where ci = Pi/P is the local mass fraction of species i in the mixture. An equation of state relates the

thermodynamic properties

v pRT v
E Pi=P - -ZP i R--T-T
i=l M i=l Mi

(7)

where R is the universal gas constant and Mi is the molecular weight of species i.

A shock wave normal to the one-dimensional flow in figure 2-1 can be described for present pur-

poses by use of the density ratio across the shock, which we will call e.

poo

-- = + (8)
ps

where the subscript oo refers to conditions ahead of the shock, and s refers to conditions behind the

shock. Note that e is affected by a change of chemical composition across the shock, which will be

treated subsequently. Also, it is notable that e is usually much less than unity. Thus the compressible

flow relations (1), (3), and (4) can be used to form the relationships

U S = EUoo (9)

Ps- P_ = poou_(1 - e) (10)

hs -- boo -

2 2
Uoo Us

2 2
(11)

These relations will be used again in Chapter 10 where flows that are not in chemical equilibrium will
be examined on a one-dimensional basis.

Flow of a compressible gas over an object in flight is usually not one-dimensional, especially if

the object tends to be blunt. Moreover, the shock wave over an object in supersonic flight will generally
tend to be a curved shock which is not everywhere normal to the flow nor parallel to the surface of the

flight object or body. In Chapters 3 and 4, it will be helpful to have quantitative relationships for all the
thermodynamic and flow-field variables across such a shock wave for compressible flow, as well as

some "strong shock" approximate expressions for hypervelocity flow. The reason for the latter is that



someof ourorder-of-magnitudeargumentsfor sizingtermsin theflow-field equationscanbefacilitated
by theseexpressions.

m

For either a two-dimensional or axisymmetric object flying at hypervelocity, U, the bow shock

wave in the stagnation region of the body is shown schematically in figure 2-2. The stagnation region

could be the leading edge of a wing or a fin, or it may be the nose of a fuselage. It could be the inlet to

an engine as well. Significantly, it is a region of a nearly normal shock wave, which implies strong com-

pression of the atmospheric gas and potentially serious thermal effects in the flow field. Since the shock

wave is generally not parallel to the body, the geometry of each, and the components of velocity normal

and tangential to both the shock and the body are shown in figures 2-2 and 2-3. Note that

0 BOW
. , =,.. /" SHOCK WAVE

%'--,/J

, ,,+
y = CONST.

Figure 2-2.- Bow shock wave--not everywhere parallel to the body.

t (SHOCK DIRECTION) / LOCALLY

/ x (BODY DIRECTION)_
qt

qt coscoU
#¢

_ _,. q

// / N'_ qn cos,,, / ,,"

r' qn sino_"s ()/ ()s

SHOCK 's "__ /.b ............

LOCALLY _ _"

"n DIRECTION

_,_ -y DIRECTION

Figure 2-3.- Velocity components behind shock; shock not parallel to body locally.

shock-related velocity components are here denoted by the symbol q for clarity. Moreover, the local

radius of curvature of the body is denoted by R here.

Figure 2-3 resolves the velocity components in shock coordinates behind the shock into those in
body coordinates. The small angle between the directions normal to the body 0b and the shock 0s is

7



denotedby m. It canbeshownfrom theordinary Rankine-Hugoniot compressibility relations for curved

shock waves (similar to those shown previously for normal shock waves). From considerations of the
conservation of mass

(qt

Pooqnoo = P sqns

qns = p---_qn.. = eU cos 0s
Ps

qt = U sin 0s

unchanged across the shock)

Us = qt cos m + qns sin m = U(sin 0s cos 0_ + e cos 0s sin m)

-Vs = qns cos co - qt sin m = U(e cos 0s cos co - sin 0s sin m)

Also, from a momentum balance,

(12)

(13)

(14)

(15)

(16)

2 2
poo + pooqn** = Ps + Psqns

which is similar to the development for equation (10) in the direction normal to the shock. The strong
shock approximation

(17)

used in equations (12) and (13) leads to

P_ << Ps

Ps = P_2( 1 - e)cos 2 0s

The energy relations across the shock can be expressed as

1(2 2) 112 2_hoo+_- qn,,,,+qt =hs+_qns+qt]

or

Use of equation (13) in (21) yields

1 2

1 2
hs - hoo = _- qn..(1 - e 2)

(18)

(19)

(20)

(21)

(22)



Again,for a strongshock,h_ canbeneglectedcomparedwith hs,and

hs= 1 _2 cos0s(1- e2)= 1 _2 cos20s
2 2

(23)

An equation of state, needed to calculate E, will be considered subsequently.

Some simple geometric relationships will be useful later. Figure 2-4 shows a portion of the body

surface (y = 0), and a line, y = constant.

x,y

/
r(x,y)

y=CONSTANT

Y_y=O

_(x)_ x)

Figure 2-4.- Segment of body surface.

On the body (y = 0), from the right side of the figure,

(dr) y=0 = sin o dx (24)

x
(r) y=0 = sin c dx (25)

For a surface where y = constant (left side of figure),

r(x,y) = ry=0 + y cos o

r(x,y) = sin o dx + y cos o

dx = -R do

do 1

dx R

These relationships will suffice for subsequent reference purposes.

(26)

(27)

(28)

(29)
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CHAPTER 3

CONTINUITY AND MASS FLUX CONSIDERATIONS

This chapter begins the formulation of the differential equations that describe real-gas flow fields

over objects in hypervelocity flight. Simplifications will be made by use of relationships from Chap-
ter 2. Although the simplification is not great, it is indicative of how it is done for all of the flow-field

equations. The development will not be repeated for the other equations.

Continuity relations will be written for any of the individual species present which will include a

term that represents the formation or depletion rate of that specie by chemical processes. It will be
summed to yield the familiar global continuity equation for compressible fluid flow. It will be special-

ized to describe only chemical elements, which will add a term that represents the transport of each ele-

ment relative to the mass averaged motion of the mixture. Further specialization can be made for each

chemical specie. Charged species are considered; we will obtain the surplus charge diffusion equation.
From that we will obtain the electric current and electric field. The latter gives rise to forces that affect

overall motion and individual transport. We will do this in some detail because it is simplest to do so at

this point rather than later, when the equations and concepts are more complicated. There is some dan-

ger that this development may appear to be tedious. However, perhaps the redeeming feature of this

chapter is the wealth of useful relationships that can be derived from continuity considerations applied to

real-gas flows.

General Continuity Equation

An element of volume in the coordinate system x,y,z is shown in figure 3-1. The coordinates

are orthogonal at their intersections, but are not necessarily Cartesian. The coordinate units themselves
do not have to be of physical length, but the product of the coordinate unit and its respective metric

(hl,h2,h3) is an arclength in that coordinate direction, and the square of the elemental arclength from the

point x,y,z to x + dx, y + dy, and z + dz is expressed in terms of hi, h2, and h3.

hl = hl(x,y,z) etc. (1)

arclength (ds) 2 = (hi dx) 2 + (h2 dy) 2 + (h3 dz) 2

For convenience, consider the chemical specie i.

ui = absolute velocity of species i

ui = u + Ui (2)

average relative

11



The components of the absolute mass flux of species i in the coordinate directions are

piui = piu + piUi (3)

x+dx

y+dy

z+dz

h3 dz----_ _h2 dY

Figure 3-1 .- Volume element.

or

piui = piu + Jix (4)

similarly

pivi = piv + Jiy (5)

piwi = piw + Jiz (6)

Summing equation (4) over all species i = 1 to v yields the mass average mass flux in the x direction.

pu =E piui (7)
i=l

Thus,

piui = u Pi + Jix = pu + Jix
i=l i=l i=l i=l

0

(8)

where the Ji are components of the mass flux vector relative to the mass average in each direction.

Note that each component of the species mass flux vector relative to the global mass flux, summed over
all species, is zero.

The mass flux of i normal to a surface is

(as before ci = mass fraction = Pi/P.)

mi = cim + Jiy (9)

12



A mass balance of species i in figure 3-1 is

03t (pihl dx h2 dy h 3 dz) = - _-x (piuih2 dy h 3 dz)dx - (pivihl dx h 3 dz)dy

03

03z
--- (piwihl dx h2 dy)dz + Kihl dx h2 dy h3 dz (10)

where the rate of change of the mass of species i per unit volume is shown as the difference of inflow

and outflow, plus the rate of mass production per unit volume, that is, Ki = mass rate of production of

species i per unit volume.

Thus

03Pi 1 [ 03

I- [ (piuih2h3)03t hlh2h3 _-x + _-y (pivihlh3) + (piwihlh2) - Ki = 0
(11)

which is the conservation equation for species i. This form of the species conservation is basic, from

which other relations will be derived. First let us derive the global conservation of mass flux.

Global Continuity Equation for the Steady State

Assume 03/03t= 0 (steady state) and 03/03z= 0 (two-dimensional or of revolution); for an

axisymmetric body, z represents the cross-flow direction, and the cross flow is taken to be zero. Then

substitute equations (4) and (5) into equation (11):

03 03
[h2h3(piu + Jix)] + -q---[hlh3(piv + Jiy)] = hlh2h3Ki03--x- oy

(12)

03 _) _-_ 03 (hlh3Jiy) + hlh2h3Ki03--x-(h2h3Piu) + _yy (hlh3Piv)=- (h2h3Jix) - _yy
(13)

The summation over all the species i gives

/ v)03 h2h3u E pi
03X i=l

+ 03 hlh3v Pi =-_x h2h3 E Jix - hlh3 E Jiy + hlh2h3 E Ki
i=l i=l i=l i=l

(14)

Equation (8) shows that

V V

E Jix = E Jiy = 0
i=l i=l

(15)

13



aswasmentionedpreviously.Since

v v

(h2h3pu) + _-_ (hlh3pv) = hlh2h3 E KiE pi = p :=_ _x-X
i=l i=l

Consider the following chemical reaction:

A2 ---) 2A

The rate of mass loss of A2 equals rate of mass formation of A. We have

v

(16)

(17)

E Ki = 0 (18)
i=l

in general. Then equation (16) becomes

(h2h3pu) + _9
_9x _yy (hlh3pv) = 0 (19)

The metrics which convert coordinate changes to lengths are for the x, y, and z direction respectively
(ref. 1)

h l = H= 1 + y (20)
R

h2 = 1 (21)

h3 = r j (22)

where j = 0 (two-dimensional) or j = 1 (axisymmetric). (The last assumes no cross flow.) Thus

b b

igx (purj) + _yy (Hpvrj) = 0 (23)

which is the steady-state global continuity equation.

Further Simplifications

Equation (23) can be simplified to the "thin shock layer" approximation by an order-of-

magnitude argument as follows (where the exponent j is omitted because equation (27) of Chapter 2 is
employed without regard to j):

_r _xU) _yV) _{ _r _--yy_pu _-x + r +Hr +p H_y+r =0
(24)
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Fromequations(27)and(29)of Chapter2andequation(20),above:

: (y)Dr sin _ - y sin _ -- = sin _ 1 + = Hsin
_x dx

(25)

For order-of-magnitude estimates, we proceed as follows. Assume that shock and body are

essentially parallel. From 0s -- 0b (03 = 0) and equation (15) of Chapter 2 where we assume _ varies

slowly with respect to x,

dos
(psUs) = e*OU cos 0s -- (26)

_x e dx

R dOs= R d0b = dx (27)

(from fig. 2-2 of Chapter 2) and

(psUs) -- pooU cos 0s (28)
_x eR

From equation (16) of Chapter 2:

(0svs0wvw(0 cos0s)Oy (pv) - O _- )~ O (29)

where pwVw - -psVs ~ +pooU- cos 0s (that is, surface mass addition as high as the free-stream mass flux

is allowed), while pwVw -- 0 (no mass addition) is allowed as well, and _5 is the shock standoff distance.

From equation (26) of Chapter 2:

br
-- = cos _ (30)
_y

Say, 6 ~ cR, with e = PMPs.

Substitute into equation (24) using equation (25) behind the shock and use the right side of

equation (15) of Chapter 2 for Us:

p_U
0 = _p_u sin 0s Hsin a + r cos 0s - Hr _p_ou

e ER eR - (-- cos 0s - p_oU cos 0s Hcos _ + (31)

Let
H= 0(1) (32)

r = O(1) (33)
R

15



At themost

sin Os- 0(1)

cosOs- 0(1)

sino and cos o - 0(1)

B

Multiply equation (31) by e/pooU; at the most, the terms are of the order

(1)+(1)-(1)- e(1+1)=0

Since e << 1, the last term is negligible and so is the last term in equation (24), which it represents.
Thus r can be regarded as rb(x), and equation (23) can be written as

+  ,ov, =obx

For H= 1, the steady-state global continuity equation for two-dimensional or axisymmetric flow,

reduced by order-of-magnitude arguments for the thin layer approximation, becomes, from
equation (38),

_--2(pu) + (pv) = 0

where

(34)

(35)

(36)

(37)

(38)

(39)

rb = rb(x) (40)

Now reduce the species continuity equation for the steady state in a similar way. Rewrite equa-
tion (13) using equations (21) and (22), and the definition

ci = Pi/P (41)

O--xO(rJcipu) + _-yO(rJHcipv)= - _-xO(rJJix) - __ (HrJJiY) + HrJKi (42)

Ci_xx (purJ) + purJ-_x-x + Hpvr j _--y+ ci_-y (HpvrJ)- 3x (rJJix)- _yy (HrJJiY) + HrjKi (43)

The underlined terms sum to 0 because of equation (39).

We then divide by rJ, consider rJ - rJ(x), and (H= 1). We neglect the mass-flux derivatives in

x-direction, and obtain the steady-state species continuity equation for species i for two-dimensional
or axisymmetric flow

16



Oci Dci _ D

PU_x x + pv OY Dy (Jiy) + Ki (44)

This is the counterpart of equation (11), for steady-state, two-dimensional, or axisymmetric flow for the

"thin layer," where as before

Jiy = mass flux vector in y direction

Ki = mass rate of production of species i per unit volume

Elemental Continuity

We next consider the element p.

Define:

Mp = atomic mass of element p

Mi = molecular mass of species i

_pi = number of atoms of element p in molecule i

Also define a set of numbers _pi as

Mp

°_Pi = [3Pi" -Mi-i

where _pi

continuity equation (44) by Otpi and sum all species:

is the mass fraction of element p in species i. Multiply the steady-state reduced species

v v _ci v DJiy v

ptl Z SPa _x i + p v _ O_piDe - _ O_pi--De + _ (_pi Ki
i=l i=l i=l i=l

(45)

Further define the elemental mass fraction

(46)

and the elemental relative mass flux

v

C'p =Z _Pi ci
i=l

(47)

Note that no elements are created

v

J'p = Z _piJiy
i=l

(48)
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v

0 = X apiKi (49)
i=l

The last expression is true for ionizing flow, as will be demonstrated. Thus we have

bC'p bC'p_ b (j,p) (50)
pu _ + pv by by

which is the simplified elemental diffusion equation for the thin shock layer.

Thus we have defined two sets of constants, O_pi _d [3pi, which are the mass of element p in
species i, and the number of atoms of element p in specms l, respectively. We have also defined the

elemental mass fraction and elemental mass flux as C'p and J'p, respectively. Moreover, we have
asserted the relationship in equation (49) which states that the mass of element p is unchanged by the

production of species i, which will be demonstrated subsequently. The steady-state elemental diffusion

equation for two-dimensional or axisymmetric flow reduced by order-of-magnitude considerations is the
result, as is shown by equation (50).

It is significant that the production term which appeared in the species continuity equation (44)

does not appear in the elemental continuity (or diffusion) equation (50). There are two advantages that
the elemental diffusion has: (1) the specie production rate need not be specified (which is of practical

utility when the flow is in chemical equilibrium) and (2) there are usually fewer elemental diffusion

equations than there are species diffusion equations.

As an exercise, to demonstrate equation (49), consider the following reaction:

O _ O ÷ + e- (51)

where element p is oxygen, and the species are O, O +, and e-. Then

tX'Oo = 1 (52)

Mo
0t'Oo ÷ - (53)

Mo+

which is a convenient convention used for the ion, and

(TOe- = 0 (54)

From equation (18),

V

X C_piKi= K0 + MO K^+= .1 (KOMo++ Ko+MO)
i=l MO + u MO +

(55)
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V

Z Ki =0=KO+Ko++Ke_=0
i=l

Electrons and ions are produced in the mass rate proportions

K_ M _
e e

KO+ Mo+

By use of equation (57) in the last equality of equation (56),

( M) (KO=- KO++ e KO ÷ =-Ko+
MO+

Use equation (58) in the last equality of equation (55)

Z OtpiK i= -Mo+Ko+ 1 +
i=l MO+ + MOKo+ 1

Factor KO+

Ko ÷ v

Mo ÷ [-(Mo+ + Me-)+ MO] = 0 = Y_ OtpiKii=l

which demonstrates equation (49) even for ionizing processes.

(56)

(57)

(58)

(59)

(60)

Charged-Particle Continuity

Finally, let us consider electrically charged particles.

Again, define a set of numbers:

03i = charge number of a particle = 0 neutral
-1 electrons

+1 ions

+2 doubly ionized

Multiply the reduced steady-state diffusion equation (44) by (--mi) • (Me-/Mi) and sum over all
species i:

Ii__lV Me- 1 3 I_ Me- ] [_ Me- yl _ Me-

3

3 (-_i) --_-i Ji + (-o3i) -_-i Ki(61)(-0.}i) Mi ci =-_yy i=l i=lpu _-x (-O)i) -_i Ci + pV ffy--y i=l
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De_ne_

v(M)c'o=-2 o,i- i ci
i=l

(62)

v(M)J'e = -2 _i--_i Jiy
i=l

(63)

Rewrite equation (61)

c)C'e 3C'e _)

pu _ + pv _)y _y
J'e (64)

which is the surplus charge diffusion equation.

We should take note of five things:

1. We have set

v M_
e

2 (-O_i) -_i Ki = 0
i=l

(65)

which can be demonstrated.

2. _,_ is proportional to the surplus charge density. 9c, g_ follows:

v v v
ni

Pc =e 2__, _ini = en 2__ _i- = en 2.a o_ixi
i=l i=l n i=l

(66)

where e is the electron charge, ¢.oi is the charge number for species i, ni is the number of species i

per unit volume of fluid, and xi = ni/n. From the relations of equations (62) and (66) and Avagadro's
rule,

Mi nM
mi =-, nimi =pi, -P

L L
(67)

where

e (-0_i) -- ci = (-_ixi) = - Pc
i=l Mi M i=l

L is Avagadro's number. For a neutral gas, even though it is ionized,

c' e = 0

(68)

(69)
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or there is no surplus charge locally.

Jt3. _ is proportional to the y component of electrical current Jy. From equation (5) we have

Jiy = piVi = nimiVi =-
niMi

• Vi
L

(70)

From equation (63) we have the mass flux of electrons relative to the mass average

v M -niVi M _ v M _

J' =Z (-c°i) e _ e _ e
e i=l eL eI_ _i=l ec0iniVi eL JY

(71)

which also defines the y component of the current, which is the flow of charge relative to the mass

average as

Jy = Z e°_iniVi
i=l

(72)

4. By summing over all species, it can be shown that

C'e+ZC'p= 1

p=l

(73)

5. By summing the elemental diffusion equation (50), adding the surplus charge diffusion equa-

tion (64), making use of equation (73), and integrating leads to the useful relation

J' +_ ' =0ey J py
p=l

(74)

Thus we have derived several relations which will prove to be useful from continuity considera-

tions for the conservation of mass, species, elements, and electric charge. Subsequently, we will com-

bine these with the equations of momentum and energy.
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CHAPTER 4

THE EQUATIONS OF CHANGE; THE HYDRODYNAMIC EQUATIONS

In the previous chapter we derived some equations which properly belong in combination with those of

this chapter. That is, in Chapter 3 we have derived the chemical species continuity equation, equation
(11), in generalized orthogonal curvilinear coordinates; specialized that to two orthogonal coordinates

for the steady state, equation (13); summed that over all species to yield the corresponding global

continuity equation, equation (19); specialized it to two-dimensional or axisymmetric flow, equation

(23); and finally simplified that by an order-of-magnitude analysis which allows mass addition at a rate

comparable to the free-stream mass flux. From this reduced form of the global continuity equation,

equation (39), we rewrote the corresponding reduced species continuity equation, equation (44);

summed to yield the elemental continuity equation, equation (50), and derived the surplus charge diffu-

sion equation, equation (64). Moreover, we established some useful statements expressed by equa-

tions (18), (49), (65), (73), and (74); related charge density to surplus charge, equation (68); and

obtained expressions for the electric current, equations (71) and (72). All of this was obtained from

continuity considerations, allowing for mass addition at a boundary, transport phenomena, and species
production at a finite rate.

In this chapter, we will combine statements concerned with momentum and energy considerations

with the above. But we will not derive these in detail as we did in Chapter 3. Rather, let us simply state

the procedure for obtaining these expressions, and write the result (refs. 1-3).

Governing Differential Equations

When the equations of change (ref. 4, p. 698) are written in orthogonal curvilinear coordinates and

applied to the hot gas between a body in hypervelocity flight and its bow shock wave (fig. 4-1), the

r

Figure 4-1.- Typical bluff configuration.
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formalism leads to two momentum equations and an energy equation, each of which contains about

100 terms. To simplify, we have eliminated all of the higher order terms by an order of magnitude

analysis (ref. 1). 1 The body configuration used for this analysis typifies a bluff flight object, or the nose

or leading edge of a vehicle in which aerodynamic heating may be severe. The individual terms in the

equations were sized in six regions of the flow: in the stagnation region, near the curved shoulder; and
on the conical flank (both behind the shock wave and near the surface). Basic assumptions are that the

shock layer is thin and that mass addition at the body surface can be as large as the free-stream mass
flux. Terms of the order e, (eRe) d, and (cRe') -1 are neglected compared with unity (Re is Reynolds

Number and Re' is based on bulk viscosity). Details of the simplification are too voluminous to display.

However, the resulting hydrodynamic equations (which can be compared to simple hydrodynamic

equations (ref. 6, p. 319)) are

x-momentum

where la is viscosity.

y-momentum

V

0p _ 9u 2 + Z niYi
_)y R i=l

(2)

where Yi is the y component of a body force (such as an electrical force which arises from an induced

electric field caused by charge separation).

ne_em_cyg_

V

pu -_x + Hpv Oy Oy (qy) + gu _yy -Hdiv qr + Z Yi Jiy (3)
i=l mi

conduction radiative
transfer

where the underlined terms concern transport of energy by conduction, and energy transfer by gaseous

and surface radiation. An alternate form of the energy equation will be presented subsequently. To these

we add the global and species continuity equations, equations (39) and (44) from chapter 3:

continuity, the global version

_)--_-(p u rb) + (p V rb) = 0 (4)

1Ho and Probstein (ref. 5) performed an order-of-magnitude analysis to size the terms in the stagnation region of a sphere in

hypersonic rarefied flight for a perfect gas, with constant Prandd Number, and without mass addition.
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or the species version

bci bci _ b (Jiy) + Ki (5)
pu _xx + pv by by

These are essentially the boundary-layer equations for a reacting gas, but importantly, they apply

throughout the flow about the body and are valid for strong ablation. Because ionized species are present

at high-speed flight, we have retained force terms arising from electric fields in the y-momentum and

energy equations. We write the elemental continuity equation for element p and for electrons

bcp + 3c_, _ (HJ'r,) (6)pu bx Hpv b---y =-

which is the elemental form, and

bc'e bc'e b_ j'o
pu _ + pv by by

(7)

which is in the surplus charge continuity form. Equation (6) is useful for the case of chemical equilib-

rium, for which it would replace equation (5); the advantage being that there are fewer elements than

there are species. Thus species concentrations would be calculated by other means. Equation (7) would

be used if there is significant electrical charge separation.

To equations (1)-(5), we add the equation of state (for the sixth unknown):

piRT Ci pRT = nimiRT RT = nikT (8)
Pi- Mi -Mi Mi -ni_---

where R is the universal gas constant, L is Avagadros number, ni is the number of species i per unit

volume, and k is the Boltzmann constant. Dalton's law relates partial and static pressure

V V

P = _ Pi = pRT _ Ci _ pRT
i=l i=l Mi M

(9)

where it may be noted that the mixture molecular weight is

Other useful relations are

U2 V 2 U 2H=h+ +--=h+--
2 2 2

(10)
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V

h = Y_ cih i (11)
i=l

T

hi=f cB dT+ hi
(12)

and for thermochemical equilibrium

ci = ci(p,T,c_) (13)

In these expressions, H and h are total and static enthalpy, R is the universal gas constant, and M is

the mixture molecular weight (defined by eq. (9)). Equation (13) is for chemical equilibrium, and can be
expressed by the law of mass action or by free energy minimization relations. For chemical nonequilib-

rium, reactions proceed at rates that can be expressed in the Arhennius form: first the reaction rate

k = AT a e -_tr (14)

secondly

Ke = BT 13e -'twT (15)

The latter is the equilibrium coefficient or law of mass action.

Energy Equation Expressed in Temperature Form

It is often convenient to write the energy equation, equation (3), in terms of temperature as
follows. From equation (11):

0h=i [ _hi _ci / i[ _hibT _ci_

_Y i=l tCi_yy + hiby]: i=l Ici_ _S+ hi_-Y]

_T v bh i v bci bT v v bci

= b---;-i:l'E Ci_--_ + E hi - E CiCpi + E hi_yyi=1 by by i=l i:l

or

v

Lh__- h Ci
by Cp_yy+ Ei=l 'Oy

(16)

(17)

where Cp is called the frozen specific heat, and is
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v

CP = Z CiCpi (18)

i=l

Differentiating equation (10), where the partial derivatives of v are negligible compared to derivatives
of u and H leads to

o_H _h 0u
- _-u -- (19)

bx bx _x

bH 3h c)u
- + u -- (20)

_gy by _)y

Substituting equations (17)-(20) in equation (3) with 94= 1 yields

P CPOx + hi_x +u
i=l

+

p Cp_y+ i=l hi_-h-+U _yy

c) c) [ 3u/ divqr
_y qY + _y/'u _yy/-

v

+ Z Yi Ji___yy
i=l mi

(21)

We rewrite equation (21):

+ i-P Cp_y+_hiby]i=l +(pu2_-+ 0uvaU_)

v

_y qy + ffy-y I.tu _--y-y-divqr + Y_ Yi Jiy
i=l mi

(22)

Multiplying equation (1) by u, we obtain

p2bU bu _ (_ but Ibp/u Vxx+pUV =UUy-y l-UWx-xl (23)

Subtracting equation (23) from equation (22) gives
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i=l i=l ay/

P/_ul2-divqr+ i yiJiY+ (_--_Px)
ay qy+ I/)y] i=l mi u

(24)

which is the temperature form of the energy equation.

This completes the formulation of the differential equations reduced by order-of-magnitude argu-

ments. They apply throughout the flow about the forebody shown in figure 4-1, and are representative of
the flow wherein severe heating may occur, such as forebodies in axisymmetric or two-dimensional

flow. This would include forward stagnation regions, leading edges of lifting surfaces (and perhaps

engine inlets), and bluff inclined surfaces. Among other things, the equations allow for chemical reac-

tions (equilibrium or nonequilibrium), electrical charge separation (and the electrical fields that are

induced), and ablation at rates up to the free-stream mass flux rate. Subsequently, various terms in the

equations pertaining to heat conduction, radiative transfer, electric fields, and the transport of mass by

four kinds of diffusion (concentration gradients of species, thermal, pressure, and (electrically) forced

diffusion) will be described and assessed as to the relative importance of each. This will be done in the
next chapter.

Thus we have the governing differential equations concerning mass conservation (eq. (4)), state-

ments of the x and y components of momentum (eqs. (1) and (2)), the energy equation expressed in

terms of total enthalpy (eq. (3)), the species continuity equation (eq. (5)), and the equation of state (eq.
(8) or (9)); effectively six equations in six unknowns, p, p, u, v, H, and ci (at least for an electrically

neutral gas). Alternatively, equation (6) can replace equation (5); the energy equation, equation (3), can

be expressed in terms of temperature and can be replaced by equation (24); and for a nonneutral gas, the

surplus charge equation, equation (7), would be used along with an electrodynamic or electrostatic
equation which will be presented later.

Illustrative Boundary Conditions

For the balance of this chapter, we consider some illustrative boundary conditions for these differ-
ential equations. These are shown in equations (25)-(35) for y = fi (behind the shock wave), and y = 0

(at the wall). Recall that e is required to calculate all the unknowns listed previously behind the shock

wave. That requires an equation of state (eq. (8) or (9)), which in turn requires some knowledge or

assumptions about the chemical state of the gas. For example, if we assume the gas to be frozen across

the shock, the species are unchanged, equation (30); while for equilibrium we would have equation (31).

Similarly, temperature and electron concentration are treated according to whatever assumption we

make (eqs. (32), (33), and (35)). It can be seen that these boundary conditions can be written in various

forms, depending on the assumptions made and the choice of alternate dependent variables, as long as
we are consistent.

Boundary conditions at the wall are also shown for no mass addition (eqs. (36)-(42)). Equa-

tions (43)-(45) illustrate steady-state mass addition at the wall in response to flow-field heating; that is,
the excess heating is compensated by the appropriate mass injection or ablation at the wall. Figure 4-2 is

a schematic diagram corresponding to equation (45).
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Boundary condition_- At y = 8

U =U s

V=Vs

P= Ps

for chemical nonequilibrium

while for chemical equilibrium

U 2
H._--

2

Ci = Cis

Ci_. = Cis

% = f (p,T,c'p)

For chemical equilibrium with species diffusion

T = Ts(hs,Ps,Cis)

or with elemental diffusion

T = Ts(h,p,C'p,C'e)

C' s=

, , _..C e -----Ces ---- C

At y = O, with no velocity slip at the wall

u = 0 (no-slip condition)

For no mass transfer by transpiration or ablation at the wall

mw= (pV)w = 0

Total enthalpy at the wall equals the static enthalpy

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)
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V

Hw = hw = Z (cihi)w
i=l

(38)

The last equality corresponds to equation (6) of Chapter 2. Moreover,

Tw o
hiw = Cl_ dT + hi (39)

From equation (5) of Chapter 3 written for atmospheric species which we say do not penetrate the wall

miw =Cimw + Jiyw= 0 (40)

The equivalent statement for atmospheric elements would be

=C'pmw+J'pw--0 (41)

Equation (41) would not equal zero if element p originated in the wall. For no flux of electric charge to
the wall

r_ = c'e mw + Jew = 0 (42)

It may be noted that the boundary condition (eq. (40)) states that chemical species which originate

in the atmosphere do not penetrate the wall. Equation (41) is not zero for elements which originate in the
wall, and is zero for elements that do not originate in the wall. Of course for transpiration or suction in

which the boundary layer is being sucked into the wall, the zero does not pertain. Note also that equa-

tion (41) does not require the wall to be neutral electrically. The boundary condition (eq. (42)) states that

there is no absolute flux of charge into the wall. These statements are illustrative only and can be

rewritten to describe any particular requirement. For steady-state ablation, heating at the wall gasifies

the wall material as shown in figure 4-2, where the subscript m refers to species which originate in the
wall material.

Y (PV)wh m
coordinate w

I [(pv) mhm ] interior

Figure 4-2.- Ablating material in coordinates relative to the surface (wall).
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For steady-stateablation,theenergyout= energyin

(pv)whmw= -qT + [(pv)mhm]interior (43)

wherethetotalheatflux, qT,is positivein the y direction.Thus --qT is apositivequantity.

Themassbalanceis expressedby

(pv)w = (pv)i,,t_,io, = (pmvm)w (44)

It will be shown in equations (7) and (8) of Chapter 8 that the left side of equation (44) contains the

mass average velocity v, and the term Vm is the absolute velocity of the wall gases that originated in

the material. Thus we have from equations (43) and (44) for steady-state ablation

mw = (pV)w = -qT/(hmw- hminterior) (45)

In summary, the governing differential equations are typically equations (1)-(5) (with alternatives

eqs. (6) and (7) replacing eq. (5), and eq. (24) replacing eq. (3)) and the equation of state; either equa-
tion (8) or (9). Illustrative boundary conditions behind the shock wave are equations (25)-(29), with

alternate choices equations (32)-(35). At the wall they are equations (36)-(40), with alternate choices

equations (41) and (42). Steady-state ablation at the wall is typically described by equation (45), and

will be developed in more detail in Chapter 8.

REFERENCES

1. Howe, J. T.; and Sheaffer, Y. S.: Role of Charge Separation and Pressure Diffusion in the Gascap of

Entry Objects. AIAA J., vol. 7, no. 10, Oct. 1969, pp. 1971-1977.

2. Ho, H. T.; and Probstein, R. F.: The Compressible Viscous Layer in Rarefied Hypersonic Flow.

ARL TN 60-132, Aug. 1960, Div. of Engineering, Brown Univ.

3. Hoshizaki, H.; and Wilson, K. H.: Viscous Radiating Shock Layer about a Blunt Body. AIAA J.,

vol. 3, no. 9, Sept. 1965, pp. 1614-1622.

4. Hirschfelder, J. O.; Curtiss, C. F.; and Bird, R. B.: Molecular Theory of Gases and Liquids. Wiley,
1954.

5. Ho, Hung Ta; and Probstein, Ronald F.: The Compressible Viscous Layer in Rarefied Hypersonic

Flow. ARL TN 60-132, Div. of Eng., Brown Univ., Aug. 1960.

6. Liepmann, H. W.; and Roshko, A.: Elements of Gas Dynamics. Wiley, 1957.

31





CHAPTER 5

TRANSPORT PROCESSES AND EXPRESSIONS

At this point, the differential equations conceming conservation of matter, momentum balances in two
coordinate directions, and the exchange of energy in the flow field have been developed in their most

simple forms. The equations contain terms that represent viscous effects (it, in eqs. (1) and (3) of Chap-
ter 4), the transport of mass by diffusive processes (eqs. (5), (6), and (7) of Chapter 4), forces that are

induced electrically (eqs. (2), (3), (5), (6), and (7) of Chapter 4), and the transport of energy (eq. (3) of

Chapter 4). In this chapter, we will describe those terms and assess their relative importance. Other

terms also appear that describe the transfer of energy by the emission and absorption of radiation, and

the formation and disappearance of species by chemical reactions. These will be treated in separate

chapters (6 and 10).

With respect to transport, we will not derive the transport expressions in this monograph. They are

a subject unto themselves. An outline of the derivation appears in references 1, 2, 3, and 4. The expres-

sions for the transport terms were derived independently by Chapman and Enskog. They were able to
derive the Navier-Stokes equations from the Boltzmann equation, and in so doing arrived at formulas for

the transport expressions as well as for the coefficients that appear in the expressions. Generally, the
coefficients are very difficult to calculate. We will not do that either, but will simply write the transport

expressions and make some evaluations concerning their application.

General Transport Expressions

Our first object is to examine the diffusive transport terms which appear in the hydrodynamic

equations to assess the importance of diffusive processes in the flow fields of flight objects in severe

thermal environments. The general Chapman-Enskog expressions used include three vectors: the

macroscopic gradient vector, the mass flux vector, and the energy flux vector (ref. 2, pp. 483, 485, 489,

516, and 522).

The macroscopic gradient vector of species i is defined as

_i

di = _ + ()_i-ci)

_(ln p)

_r ( v 1Ci
Xi- Z nk_XX

P mi k=l
(1)

The mass flux vector in a v component gas mixture is the mass flux of species i relative to

coordinates moving with the mass averaged velocity. Its expression (general case) is

2 v
/) In T

Ji = n- _ mi mj l_j dj - "Di_
P j=l _r

- ni mi Vi = Pi Vi (2)

(note that Dii = 0).
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The energy flux vector is (the subscript c for "conductive" will be omitted for q in this chapter)

V n

OT nkT_ 1 DTdiq =-X-_- r + _ h'_i-
-- - i=l i=l nimi

(3)

The di expression contains three kinds of terms: concentration gradient, pressure gradient, and

external force. It appears in the mass-flux vector multiplied by a multicomponent diffusion coefficient
Dij along with a thermal-diffusion term containing the thermal-diffusion coefficient D i . Thus, four
kinds of diffusive transport (concentration, pressure, forced, and thermal) are represented in the mass=

flux vector, the diffusive velocity Vi, and the energy flux vector q

The nomenclature is

Xi = mole fraction of species i

ci = mass fraction of species i

__Xi = electrostatic force on panicle i

Dij = multicomponent diffusion Coefficient of species i in species j

[3S = thermal diffusion coefficient

Vi = diffusive velocity of species i relative to mass average velocity

= "modified" translational thermal conductivity

Importantly, (1) Dij is a function of p, T, and local composition. Thus it is very difficult to evalu-

ate for more than a ternary mixture. (2) Moreover, for argon, at 1 atm at 17,000 K, _, differs by only 5%
from the ordinary _,', the "ordinary" translational thermal conductivity.

Let us now use the basic relations, equations (1)-(3), to derive some transport expressions that are
in common use, and note their limitations.

Effective Thermal Conductivity

The assumptions are pressure and forced diffusion are neglected; _p/0r = 0, the gas mixture is neu-

tral in chemical equilibrium, and the elemental composition is fixed. Equation (1) becomes

bZi

di = --_-_r (4)

Equation (2) becomes
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n2 ,_ aZj DT aT
-Ji= -- 2_., mimjI_j _rr T ar

P j=l - -

Under the assumption of fixed elemental composition and chemical equilibrium (ref. 5)

Zi =%i(p,T)

Differentiation of the mole fraction by the chain rule yields

_)_i tD_it DT+IDXi I Dp

Substituting equation (7) into equation (5) gives

n2 i - ,==[DXJoqT + oq%j ______/_DT _T_Ji=--
mimj_J_ol'Or _p_gr! T 0r

P j=l

Since bp/O_ = 0

Ji=--
mimjDtjlo, t,, T Jr

P j=l

Substituting equation (9) into equation (3) leads to

[ 0,oi ) oi o i] wq=- _-i hi n-_ mimjD_j +nkT --

-- i=l \ P j=l _ W i=l nimi "_

The brackets can be called an effective thermal conductivity. Thus

which is a Fourier conduction format with

(5)

(6)

(7)

(8)

(9)

(10)

q = --_-eff _ (10a)

)_eff = keff (p,T) (11)

Although the application has limitations noted above, this approach has been very useful, as will be

apparent when the equations are solved subsequently. It is noted that

ci = ci (p,T) (12)
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v

h(p,T) = y__,cihi

i=l

(13)

cilffT-Jp _ [Oci_
Cp = _ i=l i=l

(14)

or if C-p represents the "frozen" specific heat

v

CP= _-p i=l P

Partially differentiate equation (13):

_--_- = l_--Tlp _ + _ - _ p __r

Since _p/_r is zero, we obtain

(15)

Then equation (11) becomes

m

(16)

_h _T

_r_r= cp-_-_r (17)

We define an effective Prandtl number as

_.eff _h _ I.t _h

Cp _[ Preff _

(18)

cpB (19)
Preff = _e-"-ff

which will appear subsequently as well.

Binary Mixture Approach; Fick's Law

The assumptions are forced, thermal, and pressure diffusion are neglected (_p/_ = 0, and the gas

mixture is neutral). This leads to the following expressions for equations (1) and (2):
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D T =0

n 2 3_2
Ji = -- mlm2 D12 --

p 3r

where D12 is the binary diffusion coefficient. Moreover

M
Zi =ci-, i=1,2

Mi

where the mixture molecular weight is expressed as in equation (9) of Chapter 4. (Note that

2 0_ 1 0_ 2

Zi = 1, so that - and dl =-d.2 because of Eq. (19a).)
i=l Or Or

2

M = _ xiMi = x1M1 + x2M2
i=l

Differentiate equation (21) with respect to the space coordinate

OE1 M 0Cl Cl OM
- +

Or M1 Or M1 Or

Using equation (22)

OX1 M OCl

Or M1 Or
+ c---_l(M 1 -O-_rt+ M2 c_21M1 _ -O-_-_rI

From the note above equation (22):

OCl M1

Or M

Oca 10Xl

Or M Or
(M2Cl + M 1 - ClM1)

OCl M1M2 OZ1

Or M 2 0£

(19a)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

or
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3Cl n2mlm20X1 n2 3X2
- -- - mlm2--

0r n2m 2 0r 132 0r

Substituting equation (28) into equation (20) yields

0ci

Ji=-p Dl2--
Or

This is the binary diffusion approximation, or Ficks Law. It is useful for either equilibrium or

nonequilibrium flow. Then equation (3) can be written (for no thermal diffusion)

2

_, 0T i_ 1 0ciq = - _- hi PD12 3r

From equations (15) and (17) in Chapter 4:

2

Oh _ _p OT OCi
Or _-r + E hi_r r

- - i=l -

2 OCi)

OT 1 Oh

Or_ --Cp K -Ei=l hi'_'-r

Equation (30) becomes

2 OCi] 2 OC i

- E hi--_-_r_r)- Y- hi P_2 Ori=l i=l -

q __

_, Oh

Cp 31"
'Or P_2-

i=1

Define the frozen Prandtl number

and the frozen Lewi_ number

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

Thus for a variable elemental composition (even for nonequilibrium), we have
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Le Cp Pr

(37)

2 lOCi/( 1)q- _t Oh Z p_2hi/-_-_rt 1-_e
-- _O_r i=l

(38)

This is the energy flux vector for a binary gas mixture without pressure gradients, electrical fields,
or thermal diffusion. But it allows chemical nonequilibrium with variable elemental composition. Of

course, the y component of q is of most interest, and thus are the partial derivatives of h and ci with

respect to y. This form of the-energy-flux vector has been used extensively from the earliest days of

spaceflight (refs. 6 and 7). The relationship is often approximated by allowing Le = 1, such that

q- g Oh (38a)
- _ Or

for a reacting gas in or out of chemical equilibrium. Although it applies to a binary mixture, it has also

been applied extensively to multicomponent mixtures (ref. 7) that are "sortable" into two classes
wherein each class has a "common" molecular weight and collision cross section anaong the species. For

example, species "1" may include 02, N2, C2, CO, CN, and NO; while species "2" may include O, N,

and C--but must exclude such species as H2, H, e-, etc.

The Stefan-Maxwell Approach, and the Bifurcation Approximation

Generally, the hot gas cap about a hypervelocity flight object is truly "multicomponent" chemi-

cally. Pressure gradients, temperature gradients, electric fields, and variable elemental composition may

all be important. If we apply equations (1)-(3) to determine transport phenomena, we find that Dij is

very difficult to obtain. For any two species i and j, Dij is not a function of T and p alone, even for

chemical equilibrium. It is also a function of the concentration of all other species (ref. 3). It should be

calculated at every point---even for a ternery mixture, it is an enormous task. It would be desirable to

calculate the transport fluxes and avoid the complication. The Stefan-Maxwell approximation does that

(ref. 2, p. 718, and ref. 3, p. 570). Moreover, the more recent "bifurcation" approximation extends that

concept conveniently.

Recall equation (2), and consider a binary mixture for the moment. Replace Pi with nimi, and the

fight-hand equality of equation (2) such that

.__ = -- (39)
nimi

n2 2
Vi = -- Z mjDij d_j

nip j=l

DT OlnT

nim i Or
(40)

which in the case of a binary mixture is
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n2 DT O In T
Wl = -- maD12 de--

nip nlml Or

n2 ( Damp_lnW/m2D12 d2- O_r ]nip n2mlm2_2

V2 _ --

n 2 ( DTp 3 in T/mlD21 dl- Or ]n2p n2mlm25921

Since

2

Z Ji = 0 (eq. (15) of Chapter 3),
i=l

D12 = D21 , thus

mlnlVl + m2ngV2 = 0

Therefore

(2; 1(  ,nw)0= mln 20912 d2 n2mlm2D12 __

+ (m2n2;1 2.)(d1' 'nWt- -n2mlm2Dl2 ff_r 1

which gives

01nT
dl+dz--(DT+D_) P
- - n2mlm2D12 Or

from the definition of _0_i(ref. 2, p. 470)

2

Z di =dl +d2

i=l

=0 = DT=-D T

Subtracting equation (42) from equation (43) gives

V2 V___I- - n2mlnl D12 (dl DTp 31nT)pnznl n2mlmzD12 Or

-3I. --

n2m2n2 (
D12 --_2

pnln2
+

DTp OlnT)n2mlm2Dl2 Or

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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V2 -- Wl - DTp a',m/n2D12 (Pl + 02) dl at_. ]pnln2 - n2mlm2D12
(49)

n2nl 03In T
--(V2-V1)= dl
n2D12 03r n2mlnlD12 \n2m2}J

(50)

01 /O:/1
n2D12 03I" cln2D12 _n2m2JJ

(51)

which is the Stefan-Maxwell relation for a binary gas and where di includes chemical concentration,

and thermal, pressure, and forced diffusion. Curtiss and Hirschfelder (ref. 2) have generalized this

Stefan-Maxwell relation to multicomponent gas mixtures. The following discusses that development.

The generalization leads to

v ninj 03In T i ninj ( DT DiT /E (Vj - Vi) = di
j=l n2Dij(1) -- - 03r j=l n2Dij(1) _njmj nimi]

j,i j,i

(52)

where Dij(1) ;_ Dij(1); that is, equation (52) is approximately valid for a multicomponent mixture, but

employs pseudobinary diffusion coefficients Dij(1) as described below, and replaces equation (2). Note

that

_Ji Ji _Ji
Vi - - - (53)

nimi Pi cip

and

ni
--= _i (54)
n

__){i)_j (,[i + DT 03arlnT
_d_i

z_,j=lpDij / ci

(55)

from equation (52), where Dij(1) (which is explained in what follows) is written Dij (the binary diffu-

sion coefficient).

Now concerning the Stefan-Maxwell equation (52) applied to multicomponent gas mixtures, the

derivation is lengthy and goes deeply into transport coefficient theory--beyond the scope of this mono-

graph. The derivation is outlined in Chapter 7 of reference 2. Briefly, (1) the function that is used to per-
turb the Maxwell-Boltzmann distribution expression is expressed as a sum of integrals wherein the inte-

grands contain infinite series of Sonine polynomials. (2) Only one term in the series is used which yields
the "first approximation" to the multicomponent diffusion coefficient, Dij(1). (3) Then by relations
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shown,andstepsoutlinedin reference2, equation(52)is derived.Weshouldnotethatequation(52)is
valid for amulticomponentmixture,butusesonly binarydiffusioncoefficientswhicharecomparatively
easyto obtain,andareinsensitiveto themixturecomposition.Equation(52) is generallycalledthe
Stefan-Maxwellrelation.It is anequationfor Vi or Ji in terms of binary diffusion coefficients and

replaces equation (2).

An interesting development by Kendall, Rindal, and Bartlett (ref. 8), called the "bifurcation

approximation," extends this development and has been in use in recent years. It makes use of equa-

tions (53)-(55). They have found that over a broad range of particles Dij can be represented semiem-
pirically to remarkable accuracy by the expressions in equations (57) and (58). The development is par-

ticularly noteworthy because it can be used for mixtures which contain the chemical components of

reacting air as well as species that were produced by an ablating heat shield in the extreme thermal envi-

ronment of the gas cap over a hypervelocity flight vehicle. The development continues as follows.

From equation (55) with thermal diffusion retained, define -_i and _]-j so that

(56)

D = D(p,T) (57)

D

Fi = constant such that Dij - Fi Fj Dji (58)

Substituting in equation (56)

(59)

but

Xi M

ci Mi
(60)

Therefore

Equation (1) becomes

v

di = =1 ci Fi Fj_Jj - cj M----Fi FjJi

pD ,= Mi
(61)
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_Zi _ In

di = _ + (%i - ci) P- _ 0r p _m k=l

M:(c  ii
pD k Mi Mjj=l

Fi_i i cjFj /

Mi j=l Mj ]

Multiplying by Mi/Fi and summing over all i

Mi0zi Mi OlnpEli Or FF-/i (_i-ci) o_r
i=l

pDM2i( iFj-_J_x
= _ ci

i=l j=l lvlj
v )____j__ cjFj

j=l -_J

and noting that

(62)

(63)

V V

Z DT=O _2 J-i=0

%1 i=1

Equation (63) becomes

Z Fj_Jj_ pD Mi OZi

j=l Mj M 2 Ori=l

V V

and E ci=Ezi=l
i=l i=l

-1

(M Mi)Olnp Micip Xi Micii t.[---- + - -- 1--- nk__X
bi Or Fi p mi Fip -j- k=l

(64)

(65)

V

We now solve equation (62) for 0Zi/0r and substitute equation (65) for _ Fj_j/Mj.
j=l

0%i ciFi Mi0gi M 2FiJi,_, cjFj ciFi Cj

_-M7 %1 "_i _r p--D _ii J"_-_j + nl_XXk+ (M-Mj) Olnp"j=l _ Fjj Or- - k=l -j=l

ciIMi (M- Mi) Or pmi P k=l

Fu_her, define

(66)
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and

(67)

V

Mi _i
Zi- , Y_ Zi = 1

Fi [-1.2 i=l

Then, the chain rule of differentiation gives (from eq. (68))

3Zi 392 Mi 3_i
.2--+ Zi -

Or Or Fi Or

Solving for 3)q]Or:

3)_i Fi[ 3Zi 3_2]

+Z' I

Combining equations (70) and (66), multiplying by Mi/Fi, using 5".Zi = 1 and 5".3Zi/Or = 0

equation (68) produces

3Zi+ 3,2 31.t2 M2J_i i ciFi iI(M - 3 In p _L_Xj+ Mj i nl_XXk1
J'12--_-r Zi--_-r =ci _rr _ j=l IVI_ +ci Mj) _r T- - - j=l - k=l

where L is the Avogadro's constant.

Define

(68)

(69)

(70)

from

(71)

V

.1 =M _ cjFj

j=l Mj

(72)

We solve equation (71) for _i_=-Ji + Di T 3 In T/_, using Mi)Ci = ciM:

Ji +DT 3 In T _
- 3r EM-_-gl //"2 _rr_ + zi -_-r I- ci--_-_r - ci j:l Fjj (M - Mj) _ L pP--Xi+ --_ Enk'_'Xt"k=l

+-- (M- Mi) +-- nk_._X
Mi 3r P P k=l

(73)

Further, define
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V

l.t3 = j___1Ci(M-I_,j Mj)
(74)

q
.j--E.

J
-LpXj + Mj k=l_ nl_Xk)

(75)

Equation (73) becomes the bifurcation approximation, generalized here to include all four types of
diffusion.

KRB code

0Zi _2
Ji=-DTOlnp 9D Bz +(Zi-c0--
- ar M.----1 _ ar

)"'( )1}]'1"3 _ + Fii -LpXi + Mi nk_Xk --t.t4
(76)

Equation (76) is an expression for the mass-flux vector of species i. The portion concerning trans-

port by chemical concentration gradients is labeled KRB and is from reference 8. To this we have added

the transport terms associated with thermal, pressure, and forced (electrical) diffusion. It is not a pleas-

ant appearing expression, but it is profoundly simpler than the approach which calculates multicompo-
nent diffusion coefficients, or even that which uses only one term of the Sonine polynomial series in the

integrand. The mass-flux vector expressed in equation (76) can be used to replace equation (2), and can

be used with equation (1) in equation (3) to obtain the energy-flux vector.

Summary of Transport Expressions

This is as far as we will pursue the various transport expressions and their approximations. These
are summarized in table 5-1, with some comment on applicability. It should be said that the comments

partly reflect convenience. That is, the _.eff approach, though strictly limited to a fixed elemental

composition, is employed for an elemental composition that is assumed to vary negligibly. Thus, for

convenience, the properties have been calculated, tabulated, and published for the fixed elemental com-

position of air without reference to a flow-field solution by Hansen (ref. 5), Yos (ref. 9), Moeckel and
Weston (ref. 10), and others. Some of these results have been expressed as analytical correlations by

Viegas and Howe (ref. 11), and subsequently have been used as input to flow-field solutions by a num-

ber of analysts including Howe and Viegas (ref. 12), implying that the elemental composition was fixed
or that its variation was of small consequence. The analytical expression for equilibrium air showing the

normalized ratio of density-viscosity product to the Prandtl number (the latter expressed in terms of an

approximate _eff) is presented as a function of normalized static enthalpy for three pressure levels in

figure 5-1 (adapted from ref. 11), wherein the correlation expression is a ghastly-looking formula. The

circles noted as references 1 and 2 on the figure are references 5 and 10 of this monograph. The appen-

dix presents the correlation and its results, and is the partial text of reference 11. The correlation
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Figure 5-1.- Normalized ratio of density-viscosity product to effective Prandtl number---equilibrium air.
(a) p = 10 -1 atm; (b) p = 1 atm; (c) p = 10 atm.

function will be seen subsequently included in the solution of the flow-field equations. As assessment of

the sensitivity of errors in transport properties as they affect surface heating is presented in reference 13.

Diffusion Assessment, and Compatibility of a Charged Gas With Linear Flux Theory

Four kinds of diffusive transport have been considered: those driven by chemical concentration

gradients, pressure gradients, temperature gradients, and forces arising from induced electric fields

(corresponding to electric charge separation). Each of these phenomena adds to the complexity of the

treatment, so it is appropriate to ask, what is their relative importance--can some of them be neglected?

If so, under what circumstances? Ahtye (ref. 1) showed that thermal diffusion is important in ionizing

gases, and chemically driven diffusion is generally considered to be important (and is so treated). But

what of pressure and forced diffusion? Are they negligible? They have not been treated to any large

degree in the literature. Moreover, Meador and Staton (ref. 14) have argued that the Navier-Stokes equa-

tions are not compatible with a charged gas, which would preclude charge separation and thus forced
diffusion as well. We should assess these things. Much of what follows is drawn from Howe and

Sheaffer (ref. 15). We begin by assessing diffusion caused by pressure gradients relative to diffusion

caused by chemical concentration gradients for various stages of chemical dissociation and ionization in

some regions of the flow field. Then electrically forced diffusion is assessed in an approximate manner.

Pressure Diffusion

Since the pressure and concentration gradient terms appear together in the expression of the

macroscopic gradient vector, we compare them to evaluate the role of the pressure diffusion. For that
purpose, the electrical-force terms are neglected in this paragraph. Using equation (54), equation (1) can
be written as
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/ lnpdi = _ n vnlm' _br

i=_l nlml]

(77)

v nmi /b lnb_rp

2 nimi /
i=1 l

(78)

We look at the y-component of the pressure gradient with the approximation that the density ratio
across the shock wave is small, E <<1. From equations (14) and (18) in chapter 2, and from equation (2)

in chapter 4:

bp pu 2 (79)

by R

Us = U sin 0s (80)

Ps = 9_ 2 cos2 0_ (81)

Behind the shock, the order-of-magnitude analysis of the Navier-Stokes equations applied to the

shock layer of a blunted cone indicates that the transverse pressure gradient is such that

( O   sin 0s) (ta. 0b/blnp-lbP=o -- - =O

by pby /p--_-Tcos20ssR _ _-R- ]

(82)

With the assumption

- e_ (83)
R

Equation (82) becomes

blnp_ O (tan_ Ob) (84)
by

In the stagnation region 0b = 0, so that from equations (84) and (78) pressure diffusion is negligi-

ble (electrical forces are neglected). But in the shoulder region, tan 2 0b = 0(1), and equation (84) yields

blnp_ 1 bp _ O1_) (85)by p by

Consider a dissociating gas and the reaction
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A2 ---) 2 A (86)

that we will write

Then

M --_ 2 A

From equation (40), with Di T = 0

n = nA +nM

mM = 2 mA

n2 v
Viy = -- Z mj Dij djy

pni j=l

From equation (78) for atoms:

_ n 2 mM [_____[nMI nM(WAy nA p 9AM LOyI n ] + --n 1

From equation (88)

I_(7)-_--/n'lo v 7 !to_17
= Oy/nJ = =O -_5_n/s j

Substituting equation (92) into equation (91),

2n2mA
WAy -

nAp
DAM

Similarly,

n m, .rltn ln"l1 ]VMy
(n nA)p DAML_ _ n Is +-- n 2n - n A

(87)

(88)

(89)

(9O)

(91)

(92)

(93)

(94)

50



nmA DAMI1 nA __ __ _ j (95)

1. With very little dissociation near the shock

nA (n_n_) O(c) _ 1
n s

(96)

From equations (93) and (95)

2nmA [ 1 ( e)__] 3nmAVAy- ep D_ -_-(e)+ -_- - p5 DaM (97)

which can be large

nmA [ 1 (e)_.] 3nmA--DaM + (e) + - eDaM (98)
VMy= 13 _- _- 2p 5

which is small.

2. Half-dissociation gives

nA 1
n A -- n M ,

n 2

Equations (93) and (95) become

4nm [ 1/6,}]- DaM - + (99)
WAy P _- _-

2nmA [_ll) 1(6}]- DAM + (100)
VMy p _-

Thus the diffusive velocities of atoms and molecules are comparable, and pressure diffusion is important

to both.

3. For nearly complete dissociation, pressure diffusion can be shown to be negligible for both

atoms and molecules by similar arguments.

4. For an ionizing gas wherein we consider A _ A ÷ + e- for simplicity, or replacing the symbol

A + by I for the ion, assess the importance of pressure diffusion as follows:

T
From equation (40), with D i = 0 (recall that Dii = 0):
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n 2
__, - (mIDAI di + meDhe _) (101)

nAp

n 2
Vi = ---_ (meDIe_d¢ + mADIA__A) (102)

nip

n2

Ve = _ (mADeA _ + mIDeI _I)
(103)

From equation (78) we have, for example,

)l p_-_-[ne + 1
de = Or _n } nernc + nimi + nAmA p Or

(104)

Noting that mA _- mI _) me and for nA )_nI = ne (slightly ionized gas) we see that pressure gradi-

ent is not important for dA and dI, but is important for de (exercise).

It can be shown, from what we have seen so far, that pressure diffusion is

1. Not important in the stagnation region (unless charge separation induces _p/_y)

2. Important in the shoulder region for the diffusive velocity of

a. Atoms in a slightly dissociated gas

b. Atoms and molecules in a half-dissociated gas

c. Atoms and ions in a slightly ionized gas
d. Atoms, ions, and electrons in a highly ionized gas

where

x

e

E

The electric force on a particle is

Forced Diffusion

__Xi= _ieE

= dynes

= 1.602x10 -12 erg/V (the electron charge)

= V/cm (the induced electric field)

(recall that t.oi = number of electron charge on species i)

We allow charge separation, so that, from electrodynamics

(105)
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div E = Pc _ 0 (106)

where

Pc = erg/(V "cm3)

= 8.855x10 -7 erg/(V 2 cm), which is the dielectric constant.

For convenience, useful conversions of physical units are

Joule

Farad

Amp

= Coulomb-Volt = 107 erg
= Coulomb/Volt

= Coulomb/sec

We consider the electric field to be primarily a function of the coordinate normal to the surface,
and obtain

_Ey _ Pc (107)
0y lit

The boundary condition at y = 0 is

l'_w

(Ey)w = -- (108)
_t

where Fw = surface charge density. The integration of equation (107) gives

_l y FwEy = Pc dy' + -- (109)

Assuming a _ossly neutral, locally nonneutral gas we write for a strip in the y direction of cross-
section dA,

6
(dA) _Ey = 0 = dAFw + dA Pc dy = 0 (110)

which leads to

Fw = - I Pc dy
(111)

From equations (109) and (111) we obtain
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1 I 'Ey(y) = - _- Pc dy' (112)

For convenience, we assume that a thin stratum (of thickness A) of charged gas (with average

charge density Pc) exists behind the shock as shown in figure 5-2.

.o.
NEUTRAL (

Figure 5-2.- Locally nonneutral flow field.

The field behind this layer is, from equation (112)

Since

1IEy(_ -A) =- _- pcdy =- I5 -(8 -A)] - -_
_6

(113)

v

Pc = e _ _ini

i=l

8A
Ey(5 - A) -

_s5 e _ _ini)

We consider only A, A +, e-, and the ionization reaction

A --->A+ +e -

We define the degree of charge separation S for a ternary mixture of atoms, ions, and electrons as

S = 1 ne- _ 1 (nA ÷ -- ne-) = 1 _ _ini
hA+ hA+ nA* i=l

Equation (114) becomes

Ey =- _- enA.S

From equation (105), the y component of Xi is

(114)

(115)

(116)
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Yi = --03ie2 g- nA÷S (117)

(In orderto comparetheforcedandconcentrationdiffusion terms,wewill neglectpressurediffusion.)
The y componentof equation(1) canbeexpressedas

/ 3 )_i C__ip Yi -£ nkYk
diy= 0y p _mi k=l

(118)

Approximate

(119)

Then, substituting equations (117) and (119) into equation (118) yields

diy Xis-)_iw /ci[ pf.oi £nk(_0)k ) e28 nA.S (120)
/p L mi k=l _I/

The equation of state is

piRT RT RT

Pi- Mi - nimi.Lmi = ni_ = nikT (121)

where R is the universal gas constant, and L is Avagadro's number.

Dalton's law for partial pressures is

V

P = £ Pi = nkT
i=l

(122)

ThUS,

ni ni Hi

p nkT kT
(123)

and

nil.0i )_if.0i
ci p oli- _
p mi pmi kT

(124)

Using the notation

55



A ____A+ + e -

II

I

cinlS cinlS ciXiS ( Mit)QS (125)p - nkT - kT - _iM ] kT

And substituting equations (125) and (124) into equation (120) gives

kT __(0 i + M- _i S _2 _ A ]

Forced diffusion can be neglected if the second term on the right is much smaller than the first. Multiply

the fight side of equation (126) by 5/Zis. Thus the criterion for species i becomes

If )Ciw/_is <<1, and ni = kin, the criterion becomes

(128)

where for purposes of estimating the effect, all quantities are evaluated behind the shock wave (at high

altitude, large gradients exist behind the shock wave as well as at the body surface). For increasing Xi,

the criterion is first violated by the electrons (Mi/M _ oi) in the first parentheses followed closely by the

ions. Generally, the most sensitive condition is for the electrons. Note that

n_ p (129)
kT (kT) 2

Accordingly, the criterion becomes

e252 p A

gt (kT)2 8
XIS <_1 (130)

The Debye length is defined by

A2 _ _gkT

e2ni
(131)

In these terms, the criterion is
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e2nI52A 52 A
S - S_ 1 (132)

_kT 5 A2 5

Thepressureandtemperaturefor air in chemicalequilibriumbehinda normalshockis givenasa
functionof flight speedandaltitudein reference12.For agiven p andT, ZI for air can be estimated by

Zi =Zn ÷+Zo ÷+Z_+... (133)

For assigned values of S, the locus of the criterion equation (132) is shown in figure 5-3, which was
abstracted from reference 15. Thus for 5 = 0.1 cm and A -- 0.5 5, forced diffusion can be neglected

above the lines for constant S, but is not negligible below the lines. For the trajectories shown, a trace of

charge separation can affect de-, dI, and thus the mass flux vectors for atoms, ions, and electrons for
most of the entry regime. The above argument could be made more rigorous, but it is sufficient to pro-
vide the information that we wish to know.

MOON MARS

125 SATELLITE

\ /

100

E
-_ 75

a

I.-
I-

,_ 5o

CHARGE

TRAJECTORY

FOR PRIBRAM

METEOR

/

/L
FAR SOLAR SYSTEM

25 EARTH ENTRY FROM

SPACE ORIGINS

BOUNDARY FORCHARGE

SEPARATION, S

I I

0 10 20 30

VELOCITY, km/sec

Figure 5-3.-Locus of electronically forced diffusion criterion (eq. (132)).

Compatibility of a Charged Gas With Linear Flux Theory

Finally, inasmuch as we are considering nonneutral or charged gases, we should say a few words

about the compatibility of the Navier-Stokes equations with a charged gas. Several writers have raised

doubt that they are compatible, and Meador and Staton have offered a proof that the concept is not com-

patible (ref. 14). The proof argument is presented briefly here, along with my rebuttal (which also

appears in ref. 15).

The argument centers around the macroscopic gradient vector (eq. 1), which can be combined with

equation (105) to yield
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+ (Xi - c_
31np

3r
- n o)iX i E

p _ mi i=l

(134)

The electrodynamic relation

V

3 E = Pc (-0iXi--. ---=en
Or _ _=1

(135)

was employed with an assumed relation for the electric current (i here)

J= (_IE+ a2 (3__F)
(136)

The current was set to zero, which resulted in the expression for the field

(I1

(137)

This expression was used in equations (134) and (135). The charge density, effectively

V

en _ O)i)Ci

i=l

from equation (135) was used in equation (134), which resulted in an expression of the form

di -- --
 lnp(cio2/+ (Xi- CO + --

3r _ _pcl}
(138)

The last product V2T(OT/Or) is "third order" in temperature, which is not consistent with linear flux the-

ory. Thus, it was argued, (3/3r.).E and therefore charge density Pc must be zero in equation (135) to

avoid the third-order expression.

However, that conclusion seems to be a consequence of the use of two relations where one would

suffice. There are hydrodynamic equations to calculate every quantity in equation (134) except E. One

additional relation for E (eq. (135)) needs to be solved simultaneously with the hydrodynamic differen-

tial equations. Equation (135) is not (in the hydrodynamic sense) an equation for calculating

V

E ¢'0i_i

i=l

because the mole fractions Zi are calculated from the solutions of the diffusion equations, and o3i is a

set of constants. However, reference 14 used equation (135) to calculate
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V

2 _iXi
i=l

and used a second relation (eq. (136)) with L= 0 to calculate E. Of course, both equation (135) and

equation (136) are valid and physical, but if both are used in the hydrodynamic framework, equation

(135) should be regarded as a relation for E, and equation (136) a relation for one more unknown, the

current, J. Clearly, within the hydrodynamic framework, equation (134) is first-order without requiring

that Pc be zero. The electric field is simply calculable from the electrodynamic differential equation

(135), just as the vectors _ lnp/_ and 3Xi/__ are calculable from the hydrodynamic differential equa-

tions for insertion into equation (134). Thus there are no third-order terms and, on these grounds at least,

a charged gas is compatible with the hydrodynamic equations.

Alternatively, if it is assumed that there is no current, and the Chapman-Enskog expression for the

current (eq. (71) of Chapter 3)

V

/=e _ --_iii
i=l mi

(139)

(where _Ji is the mass flux vector of species i) is set to zero, there obtains for the electric field

_p _Xj _T

E=A_-[-[ +B2ij _imjDij--_--r +C
(140)

where

c0imjr j(Zj- q)
ij

A = (141)

e _ o)imjDijc j - nk0) k
ij k=l

B = P (142)

[ (tle E ,oimjajcjpo,j_
ij _mj k=l

and
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COi --

_ mi
C = (143)

- Z nk_k
e Xlj O_imjI_jcj_ mj k=l

Substitution of equations (140) and (105) into equation (1) yields

{ E( I t})(p)di = _ + Xi - Ci 1 + eA c0i - n XkCO

- k=l -

_p/ k=l
nkw B Z tOkmjDkj --_r + C -__r

kj

(144)

Again, there are no third-order terms, and the expression is compatible with linear flux theory (Navier-

Stokes equations). It is self-consistent with the Chapman-Enskog solution of the Boltzmann equation.
Coefficients A, B, and C can be computed with that theory. As before, the mole fractions of all species

are obtained from the solutions of the diffusion equation (eq. (5) of Chapter 4), rather than from equa-

tion (134). For the zero current approximation, equation (135) is superfluous, and can be omitted.
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APPENDIX

(Adapted from ref. 11)

THERMODYNAMIC AND TRANSPORT PROPERTY CORRELATION

FORMULAS FOR EQUILIBRIUM AIR

FROM 1,000 K TO 15,000 K

The thermodynamic properties, density, and temperature, as well as transport property parameters
involving viscosity, Prandtl number (including diffusion effects), and gaseous radiation absorption

coefficients--which will be developed in Chapter 6---have been correlated as a function of enthalpy at

four pressure levels (10 -1, 10 °, 101, and 102 atm). The correlation formulas are written in a generalized

form for which coefficients for a particular property and pressure level are tabulated. The correlation

formulas are useful in digital computer programs for nonadiabatic viscous flow problems.

Introduction

Thermodynamic and transport properties of high-temperature air as well as their derivatives with
respect to enthalpy at constant pressure are often needed for the computation of flow fields on bodies in

high-speed flight. These properties are available in tabular form (refs. 5 and 10). However, this form is

often not very convenient for use in digital computers. To facilitate machine computations, it is some-

times faster and easier if the properties are represented by analytical expressions which can also be

readily differentiated. Cohen (Ref. 16) correlates density and some transport properties independently of

pressure for flight speeds up to 29,000 ft/sec. Correlations are now required for high speeds up to

50,000 ft/sec to facilitate studies of high-speed entry into the Earth's atmosphere.

At these higher speeds, in excess of approximately 30,000 ft/sec, the transport properties of air are

significantly affected by ionization. Furthermore, as developed in Chapter 6, at these speeds, gaseous

radiation effects can also be important, depending on body size and altitude (ref. 17). Thus, for entry

into the Earth's atmosphere on return from the moon, the planets, or far out in the solar system, for

which entry speeds will be between 35,000 and 50,000 ft/sec, both ionization and radiation effects may
be important and should be considered. For these reasons, thermodynamic and transport properties of

equilibrium air at temperatures up to 15,000 K (stagnation temperature for flight at 50,000 ft/sec at

approximately 190,00 ft altitude) as presented in references 5 and 10, are correlated as functions of

enthalpy at the four pressure levels, 10-1, 10°, 101, 102 atm. in the present work. The Planck mean mass

absorption coefficient for gaseous radiation, as presented by both references 18 and 19, is also correlated

as functions of enthalpy at the same pressure levels.

a,b,c,d,e

h

Kp

Symbols

constant and coefficients in equation (A-1)

static enthalpy, ft2/sec 2

Planck mean mass absorption coefficient, ft2/slug
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P

Pr

T

X

Y

P

Subscripts

a

eft

l

1,2 .... n

r

pressure, atm

Prandtl number

temperature, K

independent variable in equation (A-1), h/hr

dependent variable in equation (A-1) (appropriate property)

thermal conductivity

mass density, slug/ft 3

viscosity coefficient, lb sec/ft 2

results obtained from reference 18

effective

results obtained from reference 19

e coefficients in equation (A-l)

reference conditions in table A-2

Correlation Formulas

Many attempts were made to fit smooth curves through the desired property values obtained
from references 5, 10, 18, and 19. Polynomials of all degrees up to 8 with coefficients determined by the

method of least squares and the method of Tchebycheff were tried. Fourier series and generalized conics

were also tried. In some cases it was found necessary to join as many as four sections of curves

smoothly in series to obtain adequate correlations. An attempt was made to minimize possible disconti-

nuities at the joints in segmented curves either by overlapping the sections and choosing a suitable point

in this overlapped region to be the limit of the various curves (this was done for conics), or by matching

the slope and property value of two adjoining curves at the same value of enthalpy (this was done for

polynomials). The curves presented in this paper are the best results, from the methods attempted, for

obtaining accurate and smoothly varying property values as functions of enthalpy.

Although various methods of correlation are used, it is convenient to express the correlation of

all properties at a specific pressure level by the general formula

a + by + cxy + dy 2 + elx + e2 x2 + e3 x3 ... en xn = 0 (A-l)

where the independent variable x is the enthalpy ratio h/hr and the dependent variable y is the appro-

priate gas property. It is seen that if the coefficients e3 ... en are zero, the equation is that of a general

62



conicwith inclinedaxis,andif thecoefficients c andd arezero,theequationis thatof a polynomial of

degree n.

To facilitate the use of equation (A-l), the coefficients for the various properties at the pressure

levels considered are presented in table A-1. This table shows the type of correlating function used

(general conic or polynomial of degree n) for each property; the upper and lower enthalpy limits for the

validity of each section of the correlation curve; and, for those properties fit by a general conic, the sign

of the appropriate root is also given.

The overall limits of validity of these correlation formulas for each property correspond to a

temperature range of approximately 1,000 to 15,000 K. For convenience, each property is referenced to

a standard condition. The pressure is referenced to sea-level conditions. The reference conditions of all

other properties correspond to their values at satellite enthalpy (hr = 3.125× 108 ft2/sec 2 or

12,474 Btu/lb) at each pressure level. The reference conditions are listed in table A-2.

Discussion of Results

The thermodynamic and transport properties as obtained from the correlation formulas presented

in this report and the properties they represent from references 5, 10, 18, and 19 are compared in fig-

ures A- l-A-5. In general, the agreement is good. The analytical expressions should provide property
values with sufficient accuracy for most machine calculations. In the remainder of this discussion, con-

sideration is given to certain features of the correlations.

In figure A-3 where the ratio of the density-viscosity product to the Prandtl number is correlated,

no attempt was made to fit the minor variation in the property values which occurred at low enthalpies

(near h/hr = 0.3). It was felt that the effect of this variation would be negligible in comparison to the

effects of the overall variation. The peak in each curve corresponds to the onset of ionization. The corre-

lation is seen to be very good in the ionization regime.

To study the effects of energy transport by gaseous radiation, the Planck mean mass absorption
coefficient is useful. It has been calculated from theory in reference 19 and has been obtained by a

combination of theory and experiment in reference 18. The two references are in reasonable, but not

close, agreement. The results of both are correlated in figure A-5.

First, the absorption coefficient of reference 19 as correlated for all pressure levels is shown in

figure A-5(a). The fit is fair except for the point at h/hr = 3.9 for 1 atm. pressure. The high point at each

pressure level corresponds to 15,000 K and was obtained by a graphical and logarithmic interpolation of
results in reference 19 at 12,000 and 18,000 K.

The correlation of the absorption coefficient at individual pressure levels is shown in fig-

ures A-5(b)-(e), corresponding to the results of reference 19 and in figure A-5(f)-(i), corresponding to

the results of reference 18. Except for figure A-5(f), the correlation is satisfactory. No attempt was made

to fit figure A-5(f) because of the lack of a point defining the middle range of the properties.

Finally, it is instructive to go back and examine the thermal conductivity used in the Prandtl

number of figure A-3. This is especially pertinent because the current lack of agreement between the

stagnation point convective heat-transfer rates in references 20 and 21 may be attributed to the thermal

conductivity of ionized air.
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In thepresentpaper,thethermalconductivityusedin thePrandtlnumberincludestheeffectsof
energytransferby bothmolecularcollisionsanddiffusionof molecularspecies(ref. 5). Thethermal
conductivitycalculatedfor air by Hansen(ref. 5) agreesquitewell with experimentalresultsat tempera-
turesup to 5,000K asreportedby PengandAhtye(ref. 22).At highertemperatures,Hansen'sresults
canbecomparedwith theconductivitydeducedexperimentallyfor nitrogenby Maecker(ref.23). In this
comparison,shownin figureA-6, agreementis fairly goodandtherelativemagnitudesof conductivities
of thetwo gasesareasexpected(seerefs.22and24).Resultsof King (ref.25) for thethermalconduc-
tivity of purenitrogenagreeverywell with thoseof Maecker(seefig. 7-13).

Thus,thermodynamic properties and transport property parameters have been correlated as a

function of enthalpy at four pressure levels. In general, the correlation formulas represent the properties

quite accurately. Although the formulas are lengthy, they can be evaluated very rapidly by digital com-

puters. For example, a property represented by an eighth-degree polynomial can be evaluated at

1,000 points in approximately 0.7 sec on an IBM 7090 data processing machine. This is one to two

orders of magnitude faster than having this machine look up the same number of points in a table. The

formulas are expected to be useful for flow-field computation on digital computers.
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Pressure

level,
atm

10-1

lOO
101
lO2

Q.

_a

2.8

2.4

2.0

1.6

1.2

hi- _

ft2/sec 2

TABLE A-2.- REFERENCE CONDITIONS

3.125x108

3.125x108

3.125x108

3.125x108

Pry

slug/ft 3

0.6271× 10 -5

0.5700x10 -4

0.5185x 10- 3

0.4697x10 -2

, ,.,Prl'tr'
t_ sec3/ft 6

1.8254x10-11

1.8065x10-d0

1.7754x10 -9

1.7556x10 -8

5

4.0

3.6

3.2

2.8

2.4

C,.

_ 2.0

1.6

1.2

.8

.4

I

0 6 0

Prdprpr, Tr, (_pr)l,
f_db2sec j K _Z/slug

0.4777×101] 6400 1.66×101

0.4694x1010 7200 6.68×101

0.4613x109 8150 2.11×102

0.4460x108 9350 8.62×102

(Kor)a,

ft2/s]ug
2.42x101
9.68×101

3.87x102
1.82×103

.8

Correlat_

'_(a) i I I I i

1 2 3 4 5

h/h r

.4

Correlation curve \\

Refs. 5 & 10 f

\,

i

(b)l I i I I 1 I I I i

.4 .8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0

h/h r

2.4

Correlation curve /_

\\\

(c) l I t L l , J
0 .4 .8 1.2 1.6 2.0 2.4 2.8 0

h/h r

2.0

1.6

_1.2_

.8

.4

Correlation curve /

Refs. 5 & 10

I t l I

.4 .8 1.2 1.6 2.0

h/h r

I

2.4

Figure A-1.- Density correlation. (a) p = 10 --1 atm; (b) p = 1 atm; (c) p = 10 atm; (d) p = 100 atm.
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Figure A-2.- Density-viscosity parameter correlation. (a) p = 10-1 atm; (b) p = 1 atm.
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Figure A-2.- Concluded. (c) p = 10 atm; (d) p = 100 atm.
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Figure A-3.- Density-viscosity Prandtl number parameter correlation. (a) p = 10-1 atm; (b) p = 1 atm.
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Figure A-3.- Concluded. (c) p = 10 atm; (d) p = 100 atm.
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Figure A-4.- Temperature correlation. (a) p = 10 -1 atm; (b) p = 1 atm.
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CHAPTER 6

RADIATIVE TRANSFER; RADIATING SHOCK LAYER

In the development of terms that appear in the governing flow-field equations of Chapter 4, we come to
the final formulation, that of radiative transfer. In a gas mixture at high temperature, various atomic and

molecular processes cause the gas to emit and absorb radiant energy. As we said at the outset, we will
not delve into the internal events of these species--that is a subject in its own fight. Aside from a

superficial description of these internal processes, we will confine our attention to the transfer of

radiation in and through this gas mixture and assume that the coefficients we need to quantify emission

and absorption of radiation are available to us. The physical processes have to do with the transition

from one energy level to another in a gas species accompanied by the emission or absorption of

radiation (a photon of radiant energy at a particular wavelength or frequency); emission if the species
drops to a lower energy state, or absorption if it is excited to a higher energy level. Thus there are rota-
tional, vibrational, and electronic states of molecules and atoms that are affected. Moreover, for electron

processes, there are free-free, free-bound, and bound-bound processes which correspond to a trajectory

change of a passing electron, capture of a free electron, or the transition of an electron from one orbit to

another within a species, respectively. These various processes give rise to photons in specific parts of

the electromagnetic spectrum, including spectral lines, bands, and continuum radiation. The details of

the physical processes are beyond the scope of this monograph.

There are two phenomena that will be neglected because they are not important to the application

to hypervelocity flight. First is the internal energy of radiation on the macroscopic level. The phe-
nomenon of the instantaneous presence of photons of radiant energy in a volume of gas does not affect

the internal energy of the gas at temperatures that concern us (up to 20000 to 30000 K). Secondly, radi-

ation pressure will be neglected for our application. It is important for very large regions of very hot gas,

but can be neglected in the equations of motion for present purposes. These two phenomena are
discussed in references 1 and 2.

The phenomenon of radiative transfer in a hot gas cap is illustrated in figure 6-1, which shows a

disk that is 10 in. in diameter mounted normal to a hypervelocity test stream of air. The air in which the

model is immersed is heated by an electric arc discharged into the air upstream of the model, after which

the air is passed through an aerodynamic nozzle having an exit diameter of 3.5 ft. The electric arc used

can operate at 60 MW to produce enthalpy levels up to 20,000 Btu/lbm on a continuous basis, and can

accommodate models up to 20 in. in diameter. The test conditions for this figure correspond to a less

severe environment intended to simulate flight at an altitude of 63 km and at a speed of 4.3 km/sec

(recall that orbital speed is about 7 km/sec near Earth). The gas between the bow shock wave and the

disk is luminous in the figure because it is emitting and absorbing radiation, some of which escapes the

gas cap. (This figure is by courtesy of Warren Winovich and John Balboni of NASA Ames Research

Center.)

Thus the figure illustrates the phenomenon which we intend to describe. Our objective in this

chapter is to provide expressions for the radiative heating rate, "_r, and the term, div :-_r, used in the dif-

ferential equations that describe the flow field about a body in hypervelocity flight (eq. (3) of Chapter 4,

the energy equation). Eventually, we will solve the set of coupled integro-differential equations.

For present purposes, a more detailed development of that which follows can be found in refer-

ences by Chandrasekhar (ref. 3), or a very readable account by Kourganoff (ref. 2), wherein a very
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Figure 6-1.- Radiating gas cap.

Some Definitions

detailed treatment of the development can be found, including some subtleties that are not elaborated

upon in this monograph.

As shown in figure 6-2, let P be a fixed point in an absorbing and emitting gas mixture and let S

be a fixed line through P. Let do be an element of area containing P and let T be the angle between
S and the normal Y' to do.

The amount of radiant energy flowing through do, in a specified frequency interval (v, v + dv), in

a direction making an angle T with the normal to do, within an elementary solid angle do' about the

direction S, in time dt, is

dEv = Iv cos T do d_'dv dt (1)

It follows that the spectral intensity Iv can be defined as the energy flowing at the point Pin the

direction S, per unit of time, of frequency interval, of solid angle, and of surface area normal to S (what

is fundamental is not do, but its projection do.cos T). In the general case,

Iv = Iv(P,S,t) (2)
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Figure 6-2.- Radiation coordinates.

It may be noted that for all S directions that make an angle y with Y' the solid angle do is

(2n sin y-dT). The differential spectral radiation flux due to contributions from one S direction making

an angle y with the normal Y' is

dE V

dFv - - Iv cos Y do)' (3)
dt_ dt dv

Summing over all S directions making an angle ), with the normal Y' (replace do)' by do)) and

over all angles y yields the directional spectral radiation flux

L LFv = Iv cos y(2_ sin y dy) = 2rr Iv cos 7 sin y dy (4)

The interaction between radiation and the gas is expressed in terms of an absorption coefficient

and an emission coefficient. With reference to figure 6-3, the intensity Iv in the direction S becomes
Iv + 8Iv along S' by interaction between the radiation and the matter dm contained in the volume

d¢_ ds. Experiment and theory show that

8Iv(s)

Iv

- Kvp ds =-I.tv ds (5)

where Kv is the mass spectral absorption coefficient, 1 and radiative scattering phenomena are

neglected.

Similarly, an element of mass dm sends in directions confined to an elementary solid angle do)',

in the frequency interval (v + dr) and in time dt, an amount of radiant energy equal to

dev = Jv dm dv do)' dt (6)

1 In the strict sense, the absorption coefficient, Kv, deals with the Lagrangian loss of photons (ref. 2, pp. 4-5).
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andis composedof thatenergytruly emittedby(createdby)andthat scatteredinto (from all directions)
bydm (Jv is themassspectralemissioncoefficient).

Denotingtheintensityof blackradiationof frequencyv andtemperatureby Bv(T), thelocal ther-
modynamicequilibrium(LTE) assumptionis oneof Kirchoff's laws

2
Jv= rv By(T)Kv

where rv is the indexof refractionof themedium.For simplicity,werestrictourselvesto mediafor
which rv = 1.Thus

for LTE. Theexplicit formfor thefunction
law:

(7)

wherec

Jv= Kv. By(T) (8)

By(T) is givenbyquantumstatistics,andis calledPlanck's

1 ) ,9>
is light speed, h is the Pianck constant, and By(T) is also called the "source function."

The Equation of Transfer

So far, we have adopted a partially Lagrangian point of view and, by means of the absorption coef-

ficient and the emission coefficient, have examined what happens to certain photons. From the Eulerian

point of view, the variations in the intensity of the photons near a given point are now examined.

Accordingly, consider the small cylinder element (shown in fig. 6-3) of cross section do and

length ds in the medium, and the radiant energies which cross the two faces normally in a time dt and

in directions confined to a solid angle do'.

do

I v I v + dl v

d$

Figure 6-3.- Volume element of gas oriented in the S direction.

The energies in and out are

dEv_ = Iv do do)' dv dt

dEv_, = (Iv + dlv)d_ do)' dv dt

The energy balance can be written by use of equations (6) and (5)

(10)

(11)
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-(dEv=- dEvon)= Jv dm dv do)' dt-(KvIvp ds) (d o do)' dv dt) (12)

Noting that

dm = p ds do

we substitute equations (10) and (11) into equation (12)

dlv dv do do)' dt = JvP ds do dv do)' dt - Kvlvp ds do dv do)' dt

This yields a first expression of the equation of transfer in the S-direction

(13)

which for LTE becomes

(14)

1 dlv(s) Jv
- Iv(s) - -- (15)

pKv ds Kv

- Iv(s) - By(T) (16)
1 dIv(s)

pKv ds

Plane-Parallel Radiating Layer of Gas

For our purposes, a blunt stagnation region or a stellar atmosphere is considered to be stratified in

homogeneous plane-parallel layers in such a way that a single variable (geometrical depth y) is suffi-

cient for the specification of a layer of the atmosphere. The atmosphere is supposed to be in strict

radiative equilibrium, i.e., it is assumed that the heat interchanged by convection and conduction is neg-

ligible compared with that interchanged by radiation.

We shall therefore introduce the geometrical depth y and the direction parameter w = cos 0 (see

fig. 6-4).

dy = ds cos 7 = ds cos( n - 0) = -ds cos 0 (17)

1
ds- dy - dysec O-=---dy (18)

cos 0 w

1
w - - cos 0 = -cos 7 (19)

sec 0

EDGE OF STAR
(OUR WALL)

Figure 6-4.- "Plane-parallel" radiating gas.
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As before,theassumptionof local thermodynamicequilibrium,Jv/Kv = By(T), is made (eq. 8). Thus we
obtain the modified equation of transfer in any S-direction in terms of y, by use of equation (16)

w dlv
- Iv - By(T) (20)

pKv dy

where

Iv=Iv(w,y); p=p(y); Kv=Kv(y); T=T(y) (21)

The Intensity Iv Expressed as a function of Bv and the Optical Depth

We introduce the function Xv called the spectral optical depth

Xv = (Y pKv dy

J0
(22)

thus, the element of optical depth

dxv = pKv dy (23)

represents the relative weakening of the intensity transmitted, normally, by the corresponding layer of

the geometrical thickness dy. Then equation (20) becomes

dlv
w _ = Iv - By(T) (24)

dzv

where

Iv = Iv(xv,w) (25)

We first want the solution of the homogeneous equation

dlv 1
- dxv (26)

Iv w

This is

Iv = C exp (-_) (27)

where C is a constant. The particular integral of the nonhomogeneous equation is obtained by substitut-

ing equation (27) into equation (24) (where C is regarded as a function of Xv). From equation (27),
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clexp/ l dCexpt )--.__ m m

dxv w dxv
(28)

Thus

(_) dcC exp + w dx---_
(29)

finally, we have the relation

dC Bv(T)

w exp

(30)

Integrating equation (30) gives us C as

l_ (tldt
C =- By(T) exp -

W
(31)

where the variable t replaces Xv.

From equations (27) and (31), we deduce the relation we were looking for:

(__)I xv (t)I "_v ( t-Xvldt
Iv = -exp By exp - dt = _ By exp -

w w lw
(32)

Intensity Direction Convention and the Radiative Flux Expression

The determination of the constant C brings in the distinction between I+ (toward the wall), and
Iv (away from the wall).

We define I+ for 0 < w < 1 by switching limits, changing sign, and allowing C --->_; thus for

rays directed toward the wall from layers between Xv and oo, from equation (32)

/t ,w (33)

Moreover, we know from equation (22) that at the surface (% = 0), rays directed away from the wall are
from equation (32) and our convention
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I°Iv0 =- By(T) exp - dt
W

But at %, the rays directed away from the wall are from equation (32).

I" i"I; =- By(T) exp - dt =_
W

therefore, at
below Xv, each weakened according to its optical distance (% - t) from location Xv, and of the surface

term Iv0.

(34)

- I ° (35)

Xv, Iv is the sum of the contributions from the source functions corresponding to the layers

Writing the last integral of equation (35) first, the expression for rays directed away from the wall

at the location Xv is (by use of eq. (32))

where positive Fv

and

fo"Iv(XV) = (Ivo) exp - By(T) exp - dt
W

(36)

Recall from equation (4) that

- +

Fv = 2r_ Iv cos 7 sin T dT = 2_ (Iv)COS Y sin T dy + 27t (Iv)COS T sin T dT (37)

0 2

is in the +y direction. But

cos 7 = -w, sin T d7 = dw (38)

cos T sin T d7 = -w dw

Substituting into equation (37) using equations (36) and (33) and noting that when T = 0,

w = -1, yields

(39)
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Fv = -2n
fl I(ITo) exp (-_) - fo_ BvfT) exp (- _) _

w dw

- 2n

_01 "I"* By(T) exp
V

w dw (40)

Define m by

1 dm dm
m=--, dw=--- wdw-

w m 2 ' m 3
(41)

Thus when

w = ±l_m = ±1 (42)

w = _ =:_ m =±oo (43)

Correspondingly, substitute m for w and change the limits in equation (40),

Fv = -2/_
f7 {(iv0) exp(xvm)m 3 _0_ Bv(T)exp[-(t- Xv)(m)]m 2 dt I (-dm)

m-2_ m2
V

(44)

where the first integral originates at the wall, the second integral is flux outbound from the gas between

the wall and Xv, and the last integral is inbound flux from the gas between Xv and oo; and the entire

expression gives the net spectral flux at the location Xv. Interchange the order of integration, integrating

over m first, noting that By(T) is not a function of m,

)Fv=S_7(i70)exp(zvm)m3dm-I0xvBy(T){fexp[-(t- dmdtlm3
+ 2_ By(T) m2

dt (45)
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We introduceintegro-exponentialfunctionsof order n (an integer), which are defined by

En(_) = exp(-_m) dm
m n

(46)

In the integrals of equation (45), we replace m by -m and dm by -dn_ which yields

f__ (ivo) exp('_vm) I +'' exp(-'_v m)m3 dm = (Ivo) m3
dm (47)

and

flexp(-(t - Xv)m) dm -/+'_ exp[-( Xv - t)( m)]

P

m2 Jl n_
dm= -E2(zv - t) (48)

We rewrite equation (45) as

.oo

exp(-Xvm)
Fv = 2_ (I_'0)v dm+ 2_ Bv(T) E2('%- t)dt - 2 r_ By(T) E2(t - xv)dx (49)

We define the radiosity of the wall (which is assumed to be diffuse, i.e., the intensity does not

depend on the direction)

Jvo = xlv(O)

Then, the first term of equation (49) becomes

(5O)

i .+.,_
2g (Iv0) exp(-'% m)

m3 dm= 2Jv0E3(/v)
(51)

We now assume that the wall is opaque with emissivity EVw and reflectivity Rvw.
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f0 +'°°
Jr0 = evwnBv(Tw) + Rvw2n Bv(T)E2(t)dt

I

(52)

last integral of equation (49)
with 'tv = 0

Substitute equation (52) into equation (51), then into equation (49) integrated over v, with the notation

f0 °°

qr = Fv dv (53)

we find at Xv, the radiative flux is

wall emission wall reflection

So- So-ISo"qr = 2r_evwBv(Tw)E3(Xv)dv + 2RvwE3(xv) 2xBv(T) E2(t)dt dv

So/o"+ 2_ By(T) E2('tv - t)dt d v - 2g By(T) E2(t - 'Cv)dt dv (54)

gas layer below Xv gas layer above Xv

That is, for a plane-parallel atmosphere, equation (54) is the radiative flux at Xv(y) in the +y-direction.

Note that this expression contains double integrals over space and frequency. Results of this spectral

treatment will be shown in Chapter 9.

Grey Gas, Grey Surface

The grey gas assumption implies that the radiation is not a function of wavelength, i.e., properties

such as Kv and Iv are independent of the frequency. The grey surface assumption yields eVw = ew

(which here represents the grey surface emissivity), and Rvw = Rw (which here represents the grey
surface reflectivity). Thus to simplify our development to a grey radiation problem,

f0 _

B(T) = Bv(T)dv (55)

Then the grey flux in the +y-direction is (where K and x are independent of frequency, v, and t

is a dummy x(y))
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f0 c_'

qr(Y) = 2 _ewB(Tw)E3('_) + 4nRwE3(x) B(t) E2(t)dt

f0 f0+ 2_ B(t) E2(x - t)dt - 2 _ B(t) E2(t - x)dt (56)

where

B(T) = B(t) (57)

The divergence of the radiative flux is

div q_r= _yy qr(Y) (58)

Recall that

y
x = pK dy (59)

(where the K to be used will be the Planck mean mass absorption coefficient defined by Eq. (73), and

correlated in the appendix of Chapter 5) and

d d

dx = pKdy, _--y= pK_-
(60)

We differentiate E2 and E3, by use of equation (46) to obtain

dE2('_ - t)

d't
- El(X - t) (61)

dEE(t- x)

d'_
- El(t - x) (62)

dE3(x )

d't
-- - -E2(x) (63)

We now differentiate equation (56) with respect to y, using equation (60), and assuming that the

wall is black, ew = 1, and Rw = 0. First write
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f0' l_qr(Y) = 2 nB(Tw)E3(x) + 2n B(t) E2(X - t)dt - 2 n B(t) E2(t - x)dt

Oqr Oq_ /gX
-- = 2rip I_

0y _'r 0y
-B(Tw)E2(x) + B(x)E2(0) + B(t) dE2(x - t)

dx

[ 1}- -B(x)E2(0) + B(t) E2(t - x)dt

Using equations (60)-(63) and En(0) = 1/(n - 1) (for n > 1),

Combining the integrals,

So 1-B(Tw)E2(x) + 2B(x) - B(t) EI(X -t)dt- B(t) El(t - x)dt

3qr

= 2npK -B(Tw)E2(x) + 2B(X) - B(t) El(It - xl)dt

Finally, we use Stefan's Law, riB(T) = o'T 4 (where c is the Stefan-Boltzmann constant) and the

fact that there is no radiation originating beyond x = Xs (at the shock):

oq f0OY div qr = 2_p 2(x) + 2T n-

Equation (68) is the term to be used in equation (3) of Chapter 4.

(64)

(65)

(66)

(67)

T4(t) El(It - "rl)dt J
(68)

Transparent Gas Approximation for the Emission of Radiation

It is convenient for emitting gases which absorb little, or for purposes of making radiation esti-

mates, to consider the extreme case of a transparent gas (fig. 6-5).
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Figure 6-5.- Transparent emitting gas cap.

The radiative emission rate per unit mass, per unit time, in the frequency interval (v,v + dr), within

the solid angle do', is

dev = Jv dm dv do' dt = JvP dV dv do)' dt (69)

or

dev

- JvP dv do)' (70)
dV dt

In all 4_ steradians, the gas emits radiation at the rate per unit volume

4r_Jvp dv (71)

Over all the frequencies, the emission rate per unit volume is

Et = 4rip Jv dv = 4rip KvBv(T)dv (72)

We define the Planck mean mass "absorption" coefficient as

KvBv dv _ KvBv dv

Kp = (_T4 (73)

**By dv

Correlated tabular values are presented in the appendix to Chapter 5. Then the energy emission per unit
volume is

Et = 4oT4Kpp = div qr (transparent gas) (74)
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In theone-dimensionalapproximation,half theradiationis towardthewall andhalf is directed
awayfrom thewall, thus

'f0'qr(Y) = _- Et(y')dy'- Et(y')dy' + _Tnw (75)

where the last term is the outward emission from a radiatively black wall. At the wall, the flux is

qr(0) = (r'l_w-_ - Et(y)dy (76)

and if the wall emission is neglected,

5
1 Et(y)dy

qr(O) =- _-
(77)

A combination of shock-tube experiments and theory by Kivel and Bailey (ref. 4) estimated the radiant

emission rates per unit volume of air as a function of temperature and density. The air was assumed to

be in chemical equilibrium with the corresponding chemical species concentrations. These results were

correlated by Howe (ref. 5) in the form

cTd[ P]nTa
div qr = Et = IP00]

(78)

The correlation is shown by the solid lines in figure 6-6, where the dashed curves are the results from

reference 4. The ordinate is in terms of EJ2 because it was used to estimate the heating rate to the wall.

Thus Et/2 multiplied by -45 is an estimate of the radiative heating to the wall from a transparent gas at

uniform temperature in accord with equation (77). The correlation expression (eq. (78)) was received

with more graciousness than it deserved (ref. 6, p. 398).

The Nearly Opaque Gas Approximation for the Transmission of Radiation

The other extreme, with respect to the transparent gas approximation, is the strongly absorbing gas

that is nearly opaque. The latter approximation leads to a flux-divergence term in the energy equation

which has the appearance of a radiation "diffusion" term, rather than the complete integral radiative-

transfer expression. The corresponding differential equation is much more appealing than the full

integro-differential equation. The approximation is called the Rosseland diffusion approximation.

Although it appears in the literature, and a terse description of its derivation can be found in reference 7,

I am unaware of a meaningful derivation in the literature. Thus a brief derivation is given in what fol-

lows (see fig. 6-7).
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Figure 6-6.- Correlation of radiative emission rate for equilibrium air.

x', y', z'
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0

X, y, Z

Figure 6-7.- Three-dimensional orthogonal coordinates.

For any point in the gas that does not "see" the wall, the first two terms of equation (54) can be

omitted. For present purposes, consider the gas in a three-dimensional, orthogonal coordinate system

shown in figure 6-7. Any point x,y,z, receives a portion of the radiation emitted from other locations
x',y',z' a distance L away. We have defined _tv = pKv (eq. (5)), and Jv (eq. 7), the mass spectral emis-

sion coefficient, or its equivalent KvBv(T) (eq. (8)). It is now convenient to define
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B--v= 4nlavBv (79)

which is thespectralenergyemissionrateperunit volume.Thusin theabsenceof radiativescattering,
the x componentof thespectralflux at x,y,z whichoriginatedat x',y',z' is

fff_ [B-'v(X',y',z') ]Fx,,(x,y,z) = - L 4_L2
cos(x,L)exp I.tv dL' dx' dy' dz' (80)

where the brackets are the intensity at radius L without absorption, the cosine term gives the x compo-

nent, and the exponential factor accounts for absorption. Also

cos(x,L) = (x'- x) (81)
L

and as mentioned above

(82)

is the absorption along the path L. For this special case of strong absorption, we assume that the temper-

ature varies slowly spacewise, and that radiative equilibrium exists locally. The local energy density of
radiation at the frequency v is characterized by a black body at the temperature T and is (see ref. 2,

eq. (2.8))

8_hv 3

uv =1c3 [exp(hv/kT) - 1]}
(83)

The energy absorbed at that frequency per unit volume per unit time is

CUvl.tv (84)

which is equal to the rate of energy emission locally. Thus

B---v= CUvl.tv (85)

Assume that along a path length 1/la.v, Uvl.tv changes little for all frequencies, so that equation (85) char-

acterizes T(x',y',z') locally. The variation of _tv is small with distance, and _tv is kept constant in the

integrals of equations (80) and (82). Substitute equations (85) and (81) into equation (80) to obtain
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flf._ Uv(X',Y',Z ') (x' - x) e__, L dx' dz'F xv(X,y,z) = - cl.tv 4_L 2 L
dy' (86)

Expand Uv in a taylor series

/_uv_ , /_u,A , /_u_ ,

Uv(X',y',z') = Uv(X,y,z)+ I--_--x]x,y,(X -x)+ [--_-y]x,y,z(y -y)+ [--_z Jx,y (z -z)

Substitute equation (87) into equation (86) to obtain

(87)

Fxv(X,y,z) = -ci.tv fff_ IUv(X,y,z)

IOu,,i , lOu,,t ,

+ t ,z/--_-x]x,y,(X -x) + 1Oy,zl_--lx,y,(Y- y)

, ](x,-x) /dx_'dy'_dz'l
+/--_ZJx,y,(Z-Z) j-_exp(-i.tvL)_ 4rcL 2 ] (88)

The terms that are underscored integrate to zero because they are antisymmetric with respect to (x' - x),
etc. Thus

 x ,xyz):    jxy,iif dx' dy' dz' (89)

Since

this becomes

cos(x,L) -= cos 0 - (x'- x) (90)
L

t u,,I [f f'cos2O
Fxv : -ct'tv_-'_-X]x,y, zJJJ__ -4--xxlSe--I'tvLdx' dy' dz'

(91)

Now replace the volume element dx' dy' dz' by an element in spherical coordinates centered at x,y,z as

shown in figure 6-8. Thus the volume element is

(L sin 0 d¢)(L d0)dL = L 2 sin 0 dO d_ dL (92)
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and

I_f c°s2°e-_vLL2_in°d°_'_
Fxv(x,y,z ) = -c gv / Ox tx.y.zjL _ ---o =o 4gL

(93)

_L L sinO de

dO

VOLUME: (L sinO d_)(L dO)dL

OR L2sinO dO dOdL

./_- / sin 0

Figure 6-8.- Spherical coordinates and volume element.

We integrate with respect to 0 first, and then with respect to _.

_, f27t

(cos
x,y,z -0

c_v/_uvI f_
= T _--_-X ]x,y,z JL=O e-t't'L L dE

(94)

and finally

Fxv(X,y,z) = ---c_tv(0UvI [1)= c /0Uv)_lx,z/_ _Ox,_,_
(95)

Since Uv is a function of T alone
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c duvOT
Fxv(X,y,z) - (96)

Thusthetotal flux componentin the x directionis

3P.vdT bx

cFx= FxvdV =-3 ki.tv dT ] 0--x-

Rosseland defined the "mean free path," kR, such that

C OErad

Fx=-3 KR _xx

or since

(97)

(98)

Erad = --
_0 _

4_
T '1= Uv dv

C
(99)

where c is the Stefan-Boltzmann constant. Then

Fx - 16 _ _.RT3 OT
3 (100)

The y component is obtained by replacing x by y, and the divergence of Fy or qry. is simply
(0/Oy)(qrv). Of course, _.R can be derived from standard tables of data by the expression obtained by
combinirig equations (97), (99), and (100)

"* 1 duv dvBy dT

_,R-

f0 *_duv dv

dT

(101)

and has the units of length. The approximation is somewhat limited in flow-field computations because

it tends to break down near the surface of the vehicle where temperature is diminished to the extent that

kR becomes large; that is, the gas becomes less opaque. It could be terminated arbitrarily at a distance
from the surface that is some factor of _.R.

Before proceeding to use radiative-transfer expressions in the flow-field differential equations, it

should be noted that in the treatment which follows, the gas will be assumed to be grey. That is, the

dependence on wavelength will not be included. That is for convenience and not because of necessity.
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As apracticalmatter,asingleintegraloverphysicalspaceratherthanadoubleintegralwhich includes
wavelengthappearsin theintegro-differentialequationfor energy.Thelatter integralcouldbeincluded
with amodestincreasein complexity.OurtreatmentusesthePlanckmeanmassabsorptioncoefficient,
equation(73),where Kv weighted by Bv was integrated over the entire spectrum, which smoothes

out any strong or weak absorption effects. It is simply denoted by K in the next chapter. Another

approximation which considers portions of the spectrum to be transparent, and other parts to be strongly

absorbed (ref. 8, for example) is sometimes called the "picket fence" approximation. It is a simple spec-

tral form and is easy to use; it may be particularly useful for ablation products which, although cold,

absorb strongly in some portion of the spectrum.

Having mentioned spectral features, it is useful to mention some terms that have been used in this

chapter; that is, a single photon of radiation at a particular frequency or wavelength

AE = hv = --hc (102)

here Planck's constant is

h --6.6252x10 -27 erg sec (103)

The speed of light is c, and hc = 1.9862x10 -12 erg it. An angstrom is 10 -8 cm or 10 -4 it. Thus the units

of a photon can be shown to be ergs, or can be expressed in terms of electron volts, a unit of energy

corresponding to a particular wavelength. We should also mention the particular wavelength corre-

sponding to the peak in the black-body function By. The peak is a function of temperature and the

expression is called Wein's Law

_-m = 2890/T (micrometers) (104)

Thus for a temperature of 14000 K,

_,m = 2890/1.4x 104 = 0.206 itm (105)

and the photon energy can be calculated to be 6 EV at that wavelength by use of equation (102).
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CHAPTER 7

SOLUTIONS OF THE RADIATING SHOCK LAYER

The differential equations listed in Chapter 4 can now be solved. Air in the hot flow field is
assumed to be in chemical equilibrium. The structure of the flow field will be shown, and quantities

derived from the solutions will show radiative and convective heating as well as the effects of transpira-

tion or mass addition. What follows is largely drawn from Howe and Viegas (ref. 1). Thus the equations

for the nonadiabatic shock layer in the stagnation region of bluff bodies are solved for flight speeds up
to 50,000 ft/sec in air. The effects of energy transport by conduction, diffusion of dissociated and

ionized species, and gaseous radiation (with reabsorption) are included in the analysis. The effects of a

foreign species on the radiant energy transfer in the shock layer are also investigated. Convective and
radiative heat-transfer rates in the stagnation region of the body are obtained from the solutions and are

compared with the results of others. Coupling between the two modes of heat transfer is examined. A
simplified method for predicting the effect of radiative transport on convective heat transfer is discussed.

Shock standoff distance determined from the solutions is presented and compared with the results of

other investigations. Results indicate that coupling among the energy-transfer processes may reduce the

heat transfer by as much as 50%.

At flight velocities above about 30,000 ft/sec, two phenomena may importantly affect the aero-

dynamic heating rate in the stagnation region of bluff bodies. The first of these is the ionization of the

dissociated air, which may affect heat transfer because it increases the total thermal conductivity of the

air. The second phenomenon is the emission and absorption of radiant energy by the air in the gas cap,

which for large blunt bodies may impose a much larger heating load than convective processes do.

Each phenomenon has been treated separately by others. The effects of ionization on convective
heat transfer have been examined in boundary-layer analyses by Hoshizaki (ref. 2), Cohen (ref. 3), and

Pallone and Van Tassel (ref. 4) for equilibrium air; Adams (ref. 5) for frozen flow; and Scala (ref. 6) for

equilibrium nitrogen. All of these investigations except reference 6 predict that ionization will have a
modest influence on convective heat transfer. Stagnation-region heating caused by radiative emission

from the isoenergetic equilibrium shock layer has been studied by Kivel (ref. 7).

At higher flight speeds, it can be expected that a coupling exists between convectiv.e and radia-

tive heat transfer, and that the coupling is more pronounced for larger bodies. For example, the convec-

tive heat transfer to the stagnation surface can be expected to be diminished if the shock-layer enthalpy

is diminished by radiant emission. Also, if radiation produces enthalpy gradients in the shock layer,

thermal conduction and diffusion of species may become important in that region.

As noted previously, for purposes of analysis it has been customary to separate the flow field in

the stagnation region of blunt bodies into a viscous nonadiabatic boundary layer and an inviscid isoener-

getic shock layer. The present analysis, however, treats the entire shock layer and includes all three

energy-transport processes (radiation, conduction, and diffusion), as well as momentum transport by vis-

cosity, and the solutions extend from the vehicle surface to the bow shock wave. The analysis is formu-
lated in this way in order to study the coupling between the radiation and the convection.

The effects of mass transfer from the body surface to the flow field are also considered insofar as

they affect energy transport by radiation. In this regard, some of the simplifying assumptions of a previ-

ous study (ref. 8) are relaxed. In that analysis, the hot air in the shock layer was permitted only to emit
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radiation,while thecold foreignspeciesnearthebodywaspermittedonly to absorbradiation.Another
specializationof thatanalysiswasthatboththeshocklayerandtheforeignspeciesin theboundarylayer
wererequiredto beat almostablackconditioninsofarasradiationphenomenawereconcerned.That
situationmayneverberealizedfor flight in theEarth'satmosphere,andtheresultsmaybequite
differentif it is not.In thepresentanalysis,all of theserestrictionsarelifted. Theair andtheforeign
speciesareeachpermittedto bothemit andabsorbradiationandneitheris requiredto beblack.

ANALYSIS

Regime of Analysis

The flight regime in which the analysis is valid is presented in order to support some of the

assumptions which will follow, and to relate the analysis to specific space missions. The regime is

shown as the shaded area in figure 7-1. The upper boundary of the regime is that of equilibrium flow

and appears as the heavy curve, taken from reference 7, and its extension to higher velocity. The bound-

ary shown is for a 5-ft nose radius; for a 1-ft nose radius it would move down roughly 40,000 ft in

altitude. The boundary on the lower right of the figure corresponds to a temperature of 15,000 K behind

a normal shock. It is only a limit in that transport properties are presently not correlated at higher tem-

peratures. Representative entry trajectories from references 7 and 9 (where results of ref. 10 are used in
conjunction with ref. 9) enter the figure from the top. The ballistic coefficient is (rn/CDA) and the

lift/drag ratio is L/D. Curves for several estimated (ref. 11) values of the ratio of radiative to convective

heat transfer for a 5-ft nose radius axe shown to indicate the relative importance of each. Estimated
values of the same ratio for a 1-ft nose radius would be about 10% of those shown. The heavy vertical

curve is the approximate ionization boundary. Results will be presented from just to the left of the verti-
cal ionization curve to about 50,000 ft/sec flight speed at shock-layer pressure levels of 0.1 to 10 atm.

Differential Equations

The flow model for the analysis is as before (fig. 7-2). It is also patterned after that shown in ref-

erence 12. The velocity components u,v at the point x,y are parallel and normal to the body surface,

respectively. The coordinate x is a measure of distance along the body surface only, the distance of the

point x,y from the surface is y, and from the body axis (for x/R <<1)

r(x,y) = :fix (1)

where

H= 1 + (y/R) (2)

104



350

25(

Ps' atm

10-3

10-2

UPPER LIMIT FOR

EQUILIBRIUM

R = 5 ft (REF. 7

\

\ 0

SATELLITE

(REF. 7) I LUNAR(REF. 9)

REGIME OF PRESENT ANALYSIS::

MARS FAR SOLAR

(REF. 7) SYSTEM (REF. 9)

10.0

100
= 15,000 K

5O

0 I I I I J

10 20 30 40 50 60

FLIGHT VELOCITY, ft/sec X 103

Figure 7-1.- Flight regime.

u

o v Y

Figure 7-2.- Flow model.

The Navier-Stokes equations for a thin shock layer (8/R <<1) for x ~ R were reduced by an

order of magnitude analysis in reference 13 (which was completely reformulated as described in Chap-

ter 6 to assess specific limitations and effects). In the present analysis, these equations are reduced still
further by an order of magnitude analysis where it is assumed that x ~ 8, restricting the results to the

stagnation region. In addition to the transport of energy by ordinary conduction, considered in refer-
ence 13, transport by diffusion of reacting species and by gaseous radiation is included. For the radiative
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transfertheassumptionsof a greygas,blacksurface,andplane-parallel shock layer are made. Detailed

discussion of these assumptions is given in Chapter 6 and in references 14-16. The resulting set of equa-
tions for conservation of mass, x and y momentum expressions, and conservation of energy are,
respectively,

ax (pu_)+ _ (%pv_)= o (3)

(4)

v

39 = pu2 + _ niYi
R i:1

(5)

pu + =H -tk +pDijh ij °_Y]

If°"+ HpK 2oT4(t) E l(It - xl)dt - 4 oT 4 + 2OT4wE2(I) (6)

where

u 2 + v 2

H = h + 2 (7)

h = _ cihi (8)
i=l

f0 T o
hi(T) = Cpi dT + h i (9)

and

(10)

106



En(;) = e-_C°
con

-- do)

The boundary conditions for equations (3)-(6) are at y = 0:

u=0, V=Vw, H=Hw=hw

at y = fi:

Ux
U=Us=_

R

V = Vs = ---EU

P = Ps = PooU2( I - e)

m

U 2
H=Hs=--

2

where

(11)

(12)

(13)

pOO

Ps
(14)

For flow near a blunt stagnation region in the absence of electric fields, it is convenient (although not

imperative) to eliminate equation (5) entirely and replace it with

b--EP= 0 (15)
by

The advantages of using equation (15) are not only that it results in a saving of computation time

but, primarily, it permits a simplification in the energy equation (6). That is, conduction and diffusion

processes in the multicomponent mixture of reacting species (including effects of ionizing reactions) can

be combined in the manner described by reference 17. Thus the transport of energy by diffusion of

reacting species can be represented by a "reaction conductivity," as formulated by reference 18, which

summed with the translational thermal conductivity yields a total effective thermal conductivity. As a
result, the energy equation (6) becomes 1

lit is noted that for a binary mixture of atoms and molecules, in which diffusion and conduction effects are accounted for

separately, the same equation (16) would result if the Lewis number were assumed to be unity (not assumed here) and the

equivalent Prandtl number were replaced by the frozen Prandtl number.
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pu =_x Hpv _ Dy _Pr Dy]

I o"+ Hp 2oT4(t) El(It - %l)dt-4 o'1_ + 2OT4wE2(x) (16)

where Pr contains the effective thermal conductivity as presented in reference 19 and Chapter 5.

The integro-differential equations to be solved are now equations (3), (4), (15), and (16) subject

to boundary conditions (12) and (13). Before proceeding with the transformation and solution to these
equations, it is pertinent to mention the additional equations and assumptions required for studying

effects of foreign species on radiative transport.

Foreign species effects.- Ideally, it is desirable to study the effects of a foreign species on both

thermodynamic and la ansport properties in order to obtain the effect on heat transfer. However, there are

two major difficulties associated with such a study. These are, first, that the chemical behavior of the

mixture of air and ablated gas is usually not known and, second, that the radiative emission properties of

the reacting foreign species and its products are not known. For these reasons, some simplifications are

introduced that are applicable to this portion of the analysis only. In particular, attention will be focused
on the gross effects of the foreign species on radiative properties alone to the exclusion of its effects on

other transport properties; that is, transport properties of the foreign gas are taken to be identical to those

of air, except for the radiation absorption coefficient. In spite of this, a considerable amount of general-

ity is retained as being intrinsic in the formulation of the problem. 2 The diffusion equation applicable to

the foreign species is

_)cf Ocf H_ _ pDf
pu -_x + Hpv -_y 0y 0y !

(17)

where cf is either the local mass fraction of an inert foreign species or is the pseudo mass fraction

(refs. 20 and 21) of a reacting foreign species (which accounts for both the pure form and its local com-

bination in reaction products). The symbol Df represents the "diffusion coefficient" of the "foreign"

species relative to air.

The boundary condition at the surface is obtained from a mass balance, making the assumption
that the air does not diffuse into the surface, and is at y = 0

(_Cf I _ (1 - Cfw)
Vw

/)Y ]w D fw
(18)

and at the shock, the boundary condition is at y = 8

2For gas mixtures without ionization or light-gas elements, Lees (ref. 20) shows that it is often possible to lump all chemical

species, including foreign reacting species, into two components insofar as diffusion transport is concerned. He shows that as

long as the resulting Lewis number is approximately unity, heat-transfer conclusions are independent of the reaction flow

model employed, of magnitude of reaction rates, and of any restrictions on the momentum equation. In the present work, the

bulk of the foreign gas will be near the relatively cold wall where at least the air is not ionized and we can appropriate the

generality of the Lees result for this portion of the analysis.
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cf = 0 (19)

The influence of the foreign gas on radiative transfer is obtained by its influence on the Planck

mean mass absorption coefficient K (which will be defined subsequently), which can be expressed for

the mixture of gases as

K = (1 - cf)Kair + cfKf (20)

This is a good representation if the foreign species retains its identity (is inert) and its spectral
characteristics are similar to those of air. It is noted that both Kair and Kf are functions of temperature

and their partial pressures so that equation (20) can be written

K = Kair(Pair, T) { I + cf
Kf(pf, T) 1]/ (21)

Kair(Pair, T) J/

Equation (21) indicates the need for either knowing or specifying considerable detail about the radiant

properties of the foreign species as well as those of air. Although the latter is known, the former is not,

so we adopt a simpler approach. We simply inquire as to the overall effect of a foreign gas that is more

absorbing or less absorbing than air and say

K = Kair(Ps, T)[1 + cf(o_ - 1)] (22)

Expressing K in this way takes advantage of the fact that Kair(Ps, T) has been correlated at several

pressure levels in reference 22, by use of experimental data obtained by reference 23. The significance

of 0t is obtained by a combination of equations (21) and (22)

cz=l+ 1
cf

-Kair(Pair, T) Kf(pf, T) ]

Kair(Ps, T) (1 - cf) + cf 1Kair(Ps, T)

For strong injection of foreign gas,

cf w _ 1, Pfw --> Ps

and at the wall

(23)

Thus we consider tz to represent in an approximate way the ratio of the absorption coefficient of the

foreign gas to that of air at the shock-layer pressure and wall temperature. Expressing K in the

approximate form of equation (22) retains all significant absorption phenomena; that is, when ot = 1,

K = Kair(Ps, T). When cf is 1, K = CtKair(Ps, T). When cf is zero, K = Kair(Ps, T). Finally, when 0t = 0

(injection of a nonradiating gas), K is given by the approximation K = (1 - cf)Kair(Ps, T).
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Havingcoupledtheenergyequation(16) to theforeigngasdiffusion equation(17)by useof
equation(22)to obtaintheinfluenceof a foreignspecieson radiativetransportin thegas,weproceedto
transformall of thedifferentialequationsandtheir boundaryconditions.

Transformations

Examination of equations (3), (4), (15), and (16) shows that except for the factor H appearing in

all the equations, and the radiation term in equation (16), the equations are like the usual ones for a com-

pressible laminar boundary layer. Correspondingly, we modify the usual boundary-layer transformations
to include the effect of H 3 The transforms used to change x and y to _ and rl as independent
variables are

_(x) = Psl.ts Us dx (24)

and

Us HJp dy
rI (x,y) =

(25)

A stream function is defined such that

O_ _ O_ HpvrJ (26)

which satisfies the continuity equation (3). Other definitions are

f(_,rl) - _ (27)

H
g(_,vl) = -- (28)

Hs

- T
T = -- (29)

Ts

= K (30)
Ks

3An alternate approach in which the continuity equation is reduced further is presented in reference 12, pp. 390-393.
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n_t_
_o Ps_ s_s

(31)

Then, from equations (25)-(27),

u 0f

Us 3Xl
(32)

Applying the transforms and definitions to equations (4) and (16), noting that (u 2 + v2)/2 _ H in the

stagnation region, yields

0 ( O2f_ fo2f_ + =2_/1 0us[/of/2 p°'-2 (l-e)] of o2f 02f0f}-¢
(33)

and

_-- _- _--, f_
4R°rs4q rr' 4

7D_--31 [.Io Tr'4(t)El(It- xl)dt-2 T"4 + TwE2(x)

(/:3f o3g c3f c3g)-2_ _ _
(34)

Finally, in order to reduce these equations further, it is assumed that

psl.t s = constant (35)

and that similarity exists; that is, all dependent variables are functions of rl alone. Equations (33) and
(34) become

'I0+1, 1(qff,,), + ff,, (f)2 _ 2 po<, (1 - e)
P

(36)

and

r4Ro  sl[I"g'+fg'=- L-_+-T-O-_j_ T4(t)El(,t- 'tI)dt- 2T-4+T4E2(x)
=q (37)'*

In order to relate x to 1"1conveniently, it is assumed that p = p(y) and thus from equations (10) and (25)

'*For the case in which the flow field is emitting radiation, but is transparent to radiation, the right side of equation (37) is

expressed differently. That case is treated briefly subsequently. Except where stated to the contrary, the integral expression

for radiative transport as shown in equation (37) was used throughout the analysis.
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(38)

where

(39)

Theboundaryconditions,equations(12)and(13),becomeat rl = 0

f= fw =-pwvw ,,/ _R
"V p_sUG + 1)

f=0

2hw

g = gw - _2

(40)

at 11=rls,

RU

f = fs= P'_ psl.ts( j + 1)

f' = fs = 1 (41)

g=gs = 1

It is noted that four boundary conditions involving f are employed on a third-order momentum equa-

tion, equation (36). The necessity for this is that the shock wave location, or rls is actually determined

where the above equations for fs and f's are simultaneously satisfied. The diffusion equation (17) is
transformed in like manner and becomes

C'f + fc'f = 0 (42)

Its boundary conditions are from equations (18) and (19) at rl = 0

C'f = C'fw = fw(1 - Cf w)
w

(43)
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where Sc is theSchmidtnumbert.t/pDf.At rl = _ls

Cf = Cfs = 0 (44)

The equations to be solved are (36) and (37) (and (42) if foreign species effects are considered),

subject to boundary conditions (40) and (41) (as well as (43) and (44)). Heat transfer to the surface and

shock standoff distance are derived from the solutions of the equations. They are discussed in the next
section.

Standoff Distance and Heat Transfer

The shock standoff distance, obtained from equations (25), (26), and (41), is simply

vuo+ I)

Subsequently, it will be compared with the approximation given by Hayes (ref. 24) which is

Re
5=

1 + 2(-_

The total heat-transfer rate at the stagnation surface is

qT = qc + qr

where the convective heat-transfer rate is

qc= [Pr0ylw _-w2- -- gw

and the net radiative heat transfer at the surface is (for a black surface)

qr = OT4s T=4 - 2 T4(t) E2(t)dt

,/0

Equations (47)-(49) can be combined to yield the total heat-transfer expression

qT = - _ w _ V R g'(0) + oT s T-4w - 2 =l-'4(t)E2(t)dt

(45)

(46)

(47)

(48)

(49)

(50)
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Theradiationflux from thehotgascapto thewall, qg,is representedby theintegralin equations
(49)and(50).For thecaseof atransparentisothermal_gascap,this integral,with theaid of equation
(10),andthefact thatin this instanceE2(t)_ 1 and T = 1 becomes

8 ,4qg= -2t_Ts 4 _F4E2(t) psKs dy = -2OTsPsKs_ (51)

The total energy emission rate per unit volume of gas is shown by reference 16 (p. 31) to be

_0 _

Et = 4_9 BvKv dv (52) 5

The def'mition of the Planck mean mass absorption coefficient is

_0 _

4x BvKv dv

Et
K_=

4oT4 o (53/

4r¢ Bv dv

From equations (51) and (52) the transparent isoenergetic gas-cap radiation is

Et_

qg - 2 (54)

This expression can be compared with that used in reference 11 for the plane-parallel isoenergetic

transparent gas cap represented in figure 7-3. The elemental volume dV is emitting energy at the rate of
Et per unit volume. The rate at which energy is received by the wall area dA from the gas volume dV
is

coso)dqg =- t2

where the f'u'st set of parentheses is the energy emission rate per unit solid angle from dV, and the sec-

ond set is the solid angle subtended by the wall area dA. Expressing the volume element dV in

5It is useful to note that Et for equilibrium air can be obtained from reference 23 by the relationship Et = 2o'T4(e./L), where

r_/L(the emissivity per unit depth of gas) is the terminology of the reference and not of this chapter.
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Figure 7-3.- Isoenergetic transparent gas cap.

spherical coordinates with the origin at dA, and integrating overall gas space yields the net radiant
heating rate per unit wall area 6

Et8

qg- 2

which is the same as equation (54).

Having formulated the problem and expressed quantities of interest to be derived from its solu-
tion, it is instructive to mention some features of the method of solution.

Solution of the Equations

In this section we will first discuss some of the information needed to initiate the solutions. Then

the sequence of steps used in the numerical integration will be described in a general way. Additional

information pertaining to the evaluation of the radiative flux term in the energy equation will be pre-

sented in an appendix.

The differential equations (36) and (37) subject to_boundary conditions, equations (40) and (41_),

can be integrated if the transport properties ¢p, ¢p/Pr, andK and the thermodynamic properties p andT
are known as functions of enthalpy at constant pressure. Except where noted, these are obtained from

reference 22. In that reference, the transport and thermodynamic properties of Hansen (ref. 19) and

Moeckel and Weston (ref. 25) for equilibrium air to 15,000 K were represented by correlation formulas.

6If, instead of the plane-parallel assumption, it is assumed that the body and shock are concentric hemispheres, equation (52)
becomes

1_71/2+7 72+ 3
Et818t-17[ _- _ -ff-_- 0(7 )1qg =_-_R/

where 7 = [(_/R) + 2](5/R). For 8/R e 1, the expression is

3 _RI J

which reduces to the plane-parallel case for fi/R _ 0. Thus it can be seen that for the case of 5/R ---0.04, equation (54)

overestimates the radiant flux by approximately 15%. From this we see that the assumption of a plane-parallel gas cap is

good for the transparent case, and is expected to be better yet for reabsorption.
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The Planck mean mass absorption coefficient for equilibrium air obtained from reference 23 was also

expressed by correlation formulas in reference 22. In passing, it is noted that since 9/-- 1 everywhere,

-- p_psl.ts. However, the derivative of 9 is also used and must contain the derivative of H; thus,

_P_s/+ PVUR(j + 1) P_s
(55)

Obviously, the derivative of q_/Pr must also contain the derivative of H.

The functions El(k) and E2(_) are also needed in the solution of equation (37) and in the radiant

heat-transfer equations (49) and (50). These can be obtained from the tables of reference 26 in fairly
coarse intervals of _ or (as in the present work) can be generated from the exponential integral tables of

reference 27 in very fine intervals noting that

El(k) = -Ei(-_) (56)

where the Ei designates the exponential integral and is not to be confused with E1 ... En defined by

equation (11). The function E2(_) and subsequently E3(_) is generated from equation (56) by the recur-
rence formula for n > 1

En(_)- 1 [e____En_l(_) ] (57)
n-1

The procedure for solving the differential equations begins with the assumption of profiles of _0,

9/pr ' p-l, and Q as functions of 1"1,where Q is the entire right side of equation (37). Equation (36) is

then integrated numerically using the Adams-Moulton predictor-corrector variable step integration
scheme (ref. 28). The solution is obtained by iteration to find the value of f"(0) that makes the resulting

solution satisfy the first two boundary conditions (41). The solution of equation (36) is used to solve

equation (37) directly without iteration by evaluating the integrated form of equation (37), which is
obtained as follows. The energy equation (37) can be rewritten:

_p
(58)

Let

0t = _----. g' (59)
Pr

Equation (58) becomes

dct + offPr _ Q(rl) = 0 (60)
d_ cp

An integrating factor 0 is defined by
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I_ f(Pr/_)ds 10rl f(Pr/_Ns

0=e , 0'=e (61)

Multiply equation (60) by 0,

• md_ + offPr. 0 -0. Q(rl) =0
dn

(62)

Then

daO
- 0. Q(n)

dq
(63)

and

o_0 = f 0Q(ri)drl + const.
(64)

Pr

cp ns If f(Pr/cp)dw
= Q(rl)e' • ds + const. (65)

At 11 = 0, g' = g'w yet unknown. Say

const
W

(66)

Substitute equation (66) into equation (65) to obtain

g'(rl)- dg _ 1
drl

I_ f(Pr/cp).ds

cp/Pr, e

_-w g'w + Q(rl) e • ds
(67)

We integrate again with, at rl = 0, g = gw:
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g(rl)
ds

+

f(Pr/cp)d to

I; f(Pr/9)dz

Q01)e • do_ ds (68)

which is the solution of the transformed energy equation. To evaluate g'w, let 1"1= rls in equation (68)

and use the boundary condition that g(_ls) = 1 and solve for g'w, which is

gt w

(q_/Pr) w
fo ns drl

I_ f(Pr/9)ds

(cp/Pr)e'

)<

* f f(Pr/,)dto

1
1 - gw - Qe" dq

t I°l f(Pr/9)ds
(tp/Pr)e"

If a foreign species is considered, equation (43) is used to integrate equation (42), with the result

Cf(lq) = Cfw + fw(1 - cf w)
Ii - (Sc/9)f dto

SCel;

cp
ds

(69)

(70)

118



which is evaluatedasbeforewithout iterationsothat cfw is selectedto make cf(rls)equalto zeroin
accordwith equation(44),thus

1
Cfw- (71)

1- 1/ fw --e do)
(p

_ Theresultingprofilesof g(rl), g'(rl), andcf(rl) are used to calculate new profiles of qh cp/Pr,

p-l, T, and K. The corresponding profiles of Q are calculated as described in the appendix. Using the

new profiles, the next major iteration is begun by seeking a new solution of equation (36) and so on. The
procedure is repeated until if(0) does not change from one major iteration to the next, at which point 5,

qr, and qT are calculated from the solution of the differential equations using equations (45), (49), and

(50). The method of evaluating equation (49) is presented in the appendix.

RESULTS OF THE ANALYSIS

The solutions of the integro-differential equations, including the resulting fluid flow and

property profiles across the shock layer, are presented for a variety of flight conditions. Then heat-

transfer results and shock standoff distance are shown and discussed. Finally, results with mass transfer

are presented and their significance with regard to heat transfer is discussed.

Solutions

Nonionized regime-- In presenting solutions of the differential equations, results for flight in the

nonionized regime (but near the ionization boundary in fig. 7-1) are examined first in order to evaluate

the present analysis in the light of known phenomena. It is pointed out that for the low-speed case pre-

sented (fig. 7-4 only) two specializations have been introduced in the differential equations. These are

(1) the fluid in the gas cap emits, but is transparent to radiation, and (2) conduction and diffusion
effectors are separated (and thus the frozen Prandtl number is assumed to be 0.72, and the Lewis number

is unity in keeping with footnote 1). Both specializations are valid where they are used. The conse-

quence of the first one is that the integral radiation term in the energy equation (37) is replaced by

Q = [ 2R Et

L(j + 1)U 3 P

(72)

where Et(p,T) is obtained from reference 23.
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Figure 7-4.- Flow-field solutions for U = 32,000 ft/sec at 110,000 ft altitude; Ps = 10 atm, R = 5 ft.

A solution is shown in figur e 7-4 for flight at 32,000 ft/sec at an altitude of 110,000 ft

(Ps = 10 atm) for a body having a 5-ft nose radius. It was obtained by setting q_ = 1 in the flow equa-

tions. When q0 was allowed to vary in accord with the computation of pl.t by the correlation formulas
of reference 17 for dissociated nonionized air, the resulting profiles could hardly be distinguished from

those shown for q0 = 1. The standoff distance was the same in either case (_/R = 0.0409) and was about

3% below the value estimated by Hayes' method (ref. 24). Although the radiative heat transfer was

unaffected by the assumption q0 = 1, the convective heat transfer (which is presented subsequently) was

approximately 15% lower for the q0= 1 case, an effect that has been observed and discussed in refer-

ences 20 and 29, and was as expected.

The structure of the flow field indicated by the f and f profiles is that of a momentum boundary

layer with constant external vorticity. The thermal structure indicated by the g profile is somewhat like
that of a thickened thermal boundary layer--much like that of reference 30.

The above comments apply generally to solutions obtained in the nonionized regime. At lower

shock-layer pressure levels, the standoff distance was still closer to Hayes' estimate and the flow-field
structure was even more like that of a boundary layer joined to an isoenergetic shock layer.

Thus, in every respect, the present results, for which the flow field is not separated into a bound-

ary layer and inviscid flow field, agree with results obtained when the flow field was so divided. The use

of equation (15) instead of equation (5) and, further, the agreement of the present results with those

obtained previously justify the use of equation (15) instead of equation (5). We thus conclude that the y

momentum equation (5) is not important in the stagnation region flow field for the high Reynolds

number regime. Having established the validity of the present method, we now apply it at higher flight

speeds. Henceforth we revert to our previous formulation and avoid "frozen" specific heat and Prandtl
number, but use the effective thermal conductivity instead.

Ionized regime-- In the ionized regime, results are presented with and without radiative transfer
to show its effect on the solution. Properties, computed by the use of reference 22, include the effects of

ionization.
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Flow-fieldprofilescorrespondingto flight at 50,000ft/secat 190,000ft altitude(Ps= 1atm)for
R = 1ft withoutradiativetransporteffectsareshownin figure 7-5.Heretheboundary-layerstructureis
lessdistinct thanwasexhibitedat lower flight speed.Farfrom thewall, however(y/5 > 0.3),theflow
field is isoenergeticandhasalmostconstantvorticity, asindicatedbythenearlyconstantslopeof the
U/Uscurve.Thetransportpropertyparameter(tp/Pr)/(tp/Pr)wis shownin thefigure.Usingthecriterion
of reference22, it is notedthattheregionbetweenthebodyandthepeakin this parameter(essentially
3%of thestandoffdistance)is essentiallynot ionized.
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Figure 7-5.- Flow field with ionization but without radiation effects; U = 50,000 ft/sec at 190,000 ft

altitude, R = 1 ft, Ps = 1 atm.

A solution at the same flight condition, but with radiative transport expressed by the integral

form included in the energy equation (37), is shown in figure 7-6. The enthalpy level is substantially

diminished from that of the previous figure because of the transport of energy by radiation. Here the

thermal structure of the flow field is that of a very thick thermal boundary layer joined to a nonisoener-

getic shock layer, and the question is raised as to the applicability of first-order boundary-layer theory at

this flight condition. Some speculation on this question will be made subsequently.

The effect of increasing nose radius can be seen by comparing figure 7-7 with figure 7-6. In fig-

ure 7-7, the flow field is far from isoenergetic everywhere. This behavior will, of course, affect the

convective heat transfer as will be shown subsequently.
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Figure 7-6.- Flow field with both ionization and radiation effects; U = 50,000 ft/sec at 190,000 ft

altitude, R = 1 ft, Ps = 1 atm.
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Figure 7-7.- Flow field for large nose radius; U = 50,000 ft/sec at 190,000 fl altitude, R = 5 ft,

Ps = 1 atm.

Solutions at higher and lower pressure levels (10.0 and 0.1 atm) are shown in figures 7-8

and 7-9. Boundary-layer structure is, of course, more evident in the high-pressure profiles (fig. 7-8).
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Figure 7-8.- Flow-field profiles for U = 40,000 ft/sec at 118,000 ft (Ps = 10 atm, R = 1 ft).
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Figure 7-9.- Flow-field profiles for U = 50,000 ft/sec at 248,000 ft; Ps = 0.1 atm, R = 5 ft.

A solution with mass addition at the surface is shown in figure 7-10. The flight condition is the

same as that for figure 7-6. A comparison of the two figures shows that the profiles for the injection case

are shifted a small amount to the fight for 0 < y/5 < 0.5, but coincide with the no-injection results for

y/5 > 0.5.
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Figure 7-10.- Flow-field profiles with air injection at the wall; U = 50,000 ft/sec at 190,000 ft altitude,
R = 1 ft, Ps = 1 atm, fw = -0.4.

Although figure 7-10 is for air injection at the wall, the profiles (except for Cf) resemble those

for a foreign gas, with t_ = 50, injected at the same mass-flow rate. The latter result is shown in fig-
ure 7-11. In general, the flow field is slightly cooler than that for air injection.

• I P/P_ t I

0 .2 .4 .6 .8 1.0

y/6

B

Figure 7-11.- Flow-field profiles with foreign gas injection at the wall; U = 50,000 ft/sec at 190,000 ft

altitude, R = 1 ft, Ps = 1 atm, fw = -0.4, ot = 50.
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A solutionwasattemptedfor a largerinjectionrate(fw = -0.7), but it became unstable. Although
the solution did not diverge indefinitely, the profiles oscillated, apparently within limits, with sufficient

amplitude to render them invalid. Of course, for large injection rates (corresponding, for example, to

high ablation rates caused by large heating rates), the flow field will become physically unstable.

Heat Transfer

Attention is now directed to the stagnation-region heat-transfer rates obtained from the solutions.

Convective heat-transfer rates are presented and compared with those of others. The effect of radiative

transport on convective heat transfer is shown. The conflicting theoretical (and experimental) results of

various investigators for convective heat transfer mentioned earlier are discussed and an explanation is

advanced for the differences. Radiant heat-transfer results are presented and compared with those cal-

culated by use of the isoenergetic shock-layer assumption.

Convection- The results of convective heating analysis are presented in the form of reference 6

in figure 7-12(a). Results of references 2, 3, and 6 are shown for comparison. It is seen in figure 7-12(a)
that if radiative transfer is neglected, the present result agrees well with the results of references 2 and 3.

However, it (like the results of refs. 2, 3, 4, and 5) differs greatly from the results of reference 6 at high

speed. The result of reference 29 is also shown for comparison, although ionization effects were not

included in that analysis.

The computed results of Howe and Viegas and of Scala (ref. 6) are compared with experiments

as shown in figure 7-12(b). The experiments of Warren (ref. 31) agree with the theory of Scala, while

the experiments of references 2 and 31-34 are more in agreement with Howe and Viegas. Although the

experimental discrepancy was never resolved (to my knowledge), the theoretical results were, as will be

discussed subsequently.

When radiative transport effects are included in the differential equations, the convective heat

transfer is diminished, as shown in figure 7-12_(c), the effect being larger for larger nose radii and larger
pressure levels. For R = 5 ft, Ps = 1 atm, and U = 50,000 ft/sec, the convective heating is less than 50%

of what it would be if radiative transport were ignored 7 and is only 16% of the value predicted by the

theory of reference 6.

Insofar as convective heat transfer is concerned, two questions are suggested. First, what is

responsible for the difference between the results of reference 6 and those of other analyses when radia-

tive transport is ignored? Second, is it possible to use the modified boundary-layer edge properties with

existing boundary-layer results to predict the effects of radiative coupling on convective heat transfer?

Of course, some of the differences between the results of reference 6 and those of other analyses

can be attributed to the assumed chemical state of the gas as well as to the method of formulating and

solving the problem (comparison of several analyses is made in ref. 35). However, it is likely that the

principal reason that reference 6 obtains much higher convective heating results than do other analyses
lies in the transport properties.

7It is noted that although the dashed line labeled "present result without radiation coupling" in figure 7-12(b) is shown to be

for Ps = 1 atm and R = 1 ft, it is not very sensitive to changes in pressure level and nose radius and can be used as a basis

for comparison for all R and Ps.
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Figure 7-12.-Comparison of convective heat-transfer rates. (a) Radiative transport neglected in flow

equations. (b) Convective heating---comparison with experiment. (c) Effects of radiative transport in
flow equations.
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Significantly,references2-4andthepresentanalysisall usethetransportpropertiesof Hansen
(ref. 19),but reference6 doesnot.A comparisonof thethermodynamicandtransportpropertiesof refer-
ence6with thoseof reference19yieldsthefollowing result.Thepropertiesof viscosity,frozenspecific
heat,frozenthermalconductivity,andfrozenPrandtlnumbergenerallyagreewithin afew percent
exceptat hightemperatures,whereviscositydiffersby approximatelyafactorof 2, which alsoshowsup
in thefrozenPrandtlnumber.8 However,whenthebinarydiffusioncoefficientsof reference6 areput
into theform of anequivalentreactionconductivityandaddedto thethermalconductivity,theresultis
verydifferent from Hansen'stotaleffectiveconductivityat hightemperaturesasshownin figure 7-13.
At 5000K, thevaluededucedfrom reference6 agreeswell withHansen'svalue.At 10,000K, the
former is greaterthanthelatterby afactorof about25;andat 13,000K, by afactorof about20.
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Figure 7-13.- Total thermal conductivity comparison; p = 1 atm.

Thus, it is likely that the difference between the convective heat-transfer results of reference 6

and those using Hansen's properties can be attributed to the reaction conductivity (or to the equivalent
diffusion coefficients or their corresponding cross sections). Some experimental values of total thermal

conductivity in nitrogen obtained from reference 37 are shown in figure 7-13. They are in substantial
agreement with both the curve obtained from reference 38 for N2 and Hansen's curve (ref. 19) for air,

but do not agree with the values deduced from reference 6. However, more experimental work on

conductivity, diffusion coefficients, or cross sections is required before the problem can be completely
settled.

8According to a private communication from Scala, the viscosity in reference 6 is off by a factor of 2 because of an error in

reference 36, but when viscosity is corrected, there is no appreciable change in the convective heat-transfer result of
reference 6.
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Turningto thesecondquestion,it is notedthatconvectiveheattransferhasbeencorrelatedby
meansof thedriving enthalpyacrosstheboundarylayerandotherouter-edgeboundary-layerproperties
(refs.2, 3, and29).Thequestionis, canthereductionin convectiveheattransferdueto radiativecou-
pling beaccountedfor by simplymakingthedriving enthalpy(He- Hw) lessthan(Hs- Hw) by an
amountcorrespondingto theradiantenergyemittedfrom anisoenergeticshocklayer?Theresultis not
encouraging;evenfor asmallnoseradiuswherecouplingis expectedto berelativelysmall,the
approximationgivesanerroneousresult.Forexample,thedrivingenthalpy(andthustheestimated
convectiveheattransfer)for abodywith a 1-ft noseradiusflying at 50,000ft/secat 190,000ft altitude
wouldbediminishedby about8%becauseof thisradiantemission,but theactualconvectiveheattrans-
fer calculatedby themethodof thispaperis diminishedby about15%from thecasewhereradiative
transportis neglected(asseenin figure 7-12(b)).Furthermore,thecomparisonis still worseif the
changein boundary-layeredgepropertiescorrespondingto thediminisheddriving enthalpyis takeninto
account.Thentheestimatedconvectiveheattransferwould increaseby 5%in contrastto theactual
decreaseof.15%becausePelaeincreasesas He decreases.9 Thesituationis muchworsefor larger
noseradii.

It is speculatedthatthis failureof simpleboundary-layertheorymaybeattributedto failure to
matchgradientsof theflow propertiesat theouteredgeof theboundarylayer.

Radiation- Studiesof radiantheattransferfrom theisoenergetictransparentshocklayerhave
beenmadein references7 and11.Ourpurposehereis to indicatehowtheradiantheattransfermaybe
alteredif transportprocessesareconsidered,andif thetransparentgasassumptionof thosereferencesis
relaxed.

Theeffectcanbeseenby comparingthesolid line with thedashedline in figure 7-14.It is seen
thatfor largernoseradii at50,000-ft/secflight speedwith Ps= 1atm,theradiantheattransferis
actuallyabouthalfwhatwouldbepredictedfor an isoenergetictransparentshocklayer.It is notedthata
similareffectwasobtainedfor theconvectiveheattransferatthis flight condition.Thusthecouplingof
transportprocessesreducestheconvectiveheattransfer,andthefact thattheshocklayeris not
isoenergeticreducesradiativeheattransferby largeamountsatsevereflight conditions.

Theratioof actualradiativeheattransferto thatwhichwouldbepredictedbyan isoenergetic
transparentshocklayerassumptionl0 is shownin figure7-15for severalflight conditions.Interestingly
enough,theratiodropsoff morerapidlyat 40,000ft/secthanit doesat 50,000ft/sec(for Ps= 1atm).It
canbeshownby adetailedcomparisonof thetwo solutionsfor R= 1ft (whichis beyondthescopeof
thischapter)thattheresultcanbeattributedto real-gasproperties.

9Itisassumedforillustrativepurposesthat(afterCohen,ref.3)qc*"(He- Hw)(Pelae)0"43.
10B°th qr and _ are the radiant heating rate to the wall less that emitted by the wall. Equation (49) is used to compute qr

while exluations (49) and (51) are used to obtain qr for an isoenergetic transparent flow field. The result is
qr= °_(_T'4w-_psKs).
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Figure 7-14.- Effect of nose radius on radiative heat transfer; U = 50,000 ft/sec at 190,000 ft altitude,
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Figure 7-15.-Comparison of radiative heat-transfer results to those of isoenergetic shock layer
(Tw = 1500 K).

Heat-transfer correlation- Attempts to con'elate the convective heat-transfer results shown in

figure 7-12(c) in a simple way have not been successful. However, net radiative heat transfer (radiation

flux incident on the wall less that emitted by the wall) has been correlated by the expression

-qr _',/---_ref

pooU(Hs - Hw)(U]Uref) 5/4
= --0.0024 + 0.053psKsR --

Pref
(73)

Ps

where Rref, Uref, and Pref are 1 ft, 104 ft/sec, and 2117 lb/ft 2, respectively. The con'elation is shown in

figure 7-16, and includes results for flight speeds between 30,000 and 50,000 ft/sec, nose radii between
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1 and 5 ft, and shock-layer pressure levels between 0.1 and 10.0 atm, at wall temperatures of 1000 to
1500 K.

If it is noted that Ps = p**_-2 and (Hs - Hw) = U2/2, the expression for net radiant stagnation-

region heating rate becomes

Ks

-qr = p_l C1 + C2 -8-- ¢_- _2
(74)

where C1 = --0.12×10 -7 sec 5/4 ft -3/4, C2 is 0.561×10 -3 sec 5/4 lb ft -11/4, and the units for qr are
ft lb/ft 2 sec.

Some approximate heating generalizations-- Importantly, in the absence of mass addition we

may say that size or nose radius, R, affects heating in the following ways: (1) convective heating varies
inversely with _ without radiative coupling (figs. 7-12(a) and (b)), (2) radiative heating varies

directly with R for the isoenergetic case where the shock layer is transparent (fig. 7-14), and radiative
heating at the wall varies approximately as _" when the radiative transfer is fully coupled to the flow

field (fig. 7-14 and eq. (74)---when the last term dominates). These notions will be useful in Chapter 8
where the powerful effects of mass addition on heating are examined in detail.

Effect of mass addition on heat transfer- When air is injected from the surface into the flow

field (corresponding to the solution shown in fig. 7-10), the convective heat transfer is only about 65%

of that when there is no injection (solution shown in fig. 7-7), but the radiative heat transfer is about

106% of the no-injection value. The increase in radiation is caused by a 5% increase in shock standoff
distance because of the mass addition into the flow field.

If a foreign gas that is approximately 50 times as strong an absorber and emitter of radiation as

air is injected into the flow field, the convective heat-transfer result for the foreign gas injection is about

86% of that for air injection. The decrease in convective heat transfer is accompanied by an increase in
radiative heat transfer of about 7%. Standoff distance for the foreign injection is approximately 10% less
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thanthatfor air injection,possibly because the increased radiant emission for the former cools the shock

layer and increases the density slightly.

It is interesting to note that injection of a gas that is 50 times as strong an emitter as air increases

the radiant heat transfer by only 14% over the no-injection case for this flight condition. The reason is,

of course, that most of the mass of foreign gas is in the cold part of the flow field, as can be seen from

the profiles of P/Pw, cf, and T in figure 7-11.

Shock Standoff Distance

In the absence of mass transfer at the body surface, there appears to be very little effect of trans-

port phenomena on shock standoff distance at flight speeds up to 50,000 ft/sec for the cases considered.

For example, at a speed of 40,000 ft/sec for Ps = 1 atm, _ varies from 0.0467 to 0.0468 for all nose

radii, with or without radiative transport in the flow equations. These values are very near the 0.0472

predicted by Hayes' method (ref. 24).

The standoff distance for a flight speed of 50,000 ft/sec without mass addition is shown in fig-

ure 7-17. The open symbol is the present result without radiative transport considered and is about 7%

above Hayes' estimates. With radiative transport, the present result lies from 3% about to 11% below

the estimate of Hayes.
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Figure 7-17.- Shock standoff distance; U = 50,000 ft]sec, Ps = 1 atm.

It is expected that energy transport will diminish the standoff distance because it tends to cool

the flow field and raise the density. The present results indicate that this is the case. It appears in fig-
ure 7-17 that as nose radius increases above 4 ft, and radiant transfer becomes more severe, the standoff

distance tends to grow less rapidly with R. Although results are not available, it may be that there is a
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strongtransportphenomenaeffectonstandoffdistancefor very largeradii (R> 5 ft) at severeflight
conditions.

Finally, for thecasesof moderateratesof air injection11atthesurface,thestandoffdistance
increasedapproximately5%abovetheno-injectioncase,while for astronglyabsorbinggas(a = 50)
injectedat thesamerate,thestandoffdistancewasabout6%below theno-injectionvalue.

SUMMARY

In this chapter the derivation has been used for solving the entire flow field in the stagnation

region of bluff bodies where the flow field cannot readily be separated into a shock layer and a boundary

layer. The method has been tested wherever possible to establish its validity. At flight speeds of about
30,000 ft/sec it has reproduced known results in terms of heat transfer, standoff distance, viscous effects,

and flow-field structure. At higher speeds (in the ionized flow regime), it has reproduced known heat-
transfer and standoff results when radiative transfer effects were neglected. The method has been

applied to study the effects of coupling between radiative and convective transport as well as the effects
of mass addition on energy transport. A number of general conclusions may be drawn. For high-speed

flight in the equilibrium regime (flight speeds of the order of escape speed and higher for shock-layer
pressure levels of about 1 atm and higher) strong coupling among the various modes of energy transport

exists. The prediction of convective heat transfer without including radiative coupling effects overesti-
mates convective heating by a factor of about 2 for flight at 50,000 ft/sec for R = 5 ft. Similarly, the

prediction of radiative heat transfer by the isoenergetic approximation overestimates radiative heating by
a factor of about 2 for the same flight condition.

It is interesting to note that coupling between convective and radiative heat transfer generally
reduces the convective heating rate more than can be accounted for by considering the fact that the

driving enthalpy for convective heating has been diminished by the emission of radiant energy from the

shock layer. The conclusion is that the combination of all modes of transport in the entire flow field is

important in determining convective heat transfer at the wall.

Without mass addition at the body surface, only about 7% to 3% of the flow field is free from

ionization at flight speeds from 40,000 ft/sec to 50,000 ft/sec for Ps = 1 atm. This, of course, is the

region near the cold wall. Its extent appears to be about doubled when a gas that does not ionize more

readily than air is injected (at moderate rates).

Injection of a foreign gas that is 50 times as strong an emitter of radiant energy as air increases

the radiant heat transfer by only 14% while diminishing the convective heat transfer by about 45% com-

pared with the no-injection case (for U = 50,000 ft/sec, Ps = 1 atm, R = 1 ft). The total heat transfer was

diminished by about 14%. The radiant heating increase is small because the bulk of the foreign gas
remains near the cold wall. Very little foreign gas gets into that part of the flow field where the air is

ionized.

Finally, these results of real-gas effects were obtained by use of what the author believes are cur-

rently the most reasonable values of real-gas properties. The results are considered to be quantitative to

11A moderate injection rate is one low enough not to upset the stability of the flow field. The limiting rate corresponds

roughly to that which would just "blow off" the laminar boundary layer (refs. 8 and 39).
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theextentthat thegaspropertiesarequantitative.In anyevent,thephenomenologicaleffectsshownin
theresultsareconsideredto bequalitativelycorrect.
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APPENDIX

EVALUATION OF RADIATION INTEGRALS

The term Q in the energy equation (37) that accounts for the emission and absorption of radiant

energy is

Q I If0' ='-4RoT_Ks _ _i,4(t) El(it - xl)dt_ 2_ 4 + TwE2('r)

(j + 1)U 3

(A1)

The expression must be evaluated at every point in the flow field between the body and the shock.

The terms in the brackets can be expressed as a finite series if the curve T4(t) is replaced by M

straight-line segments in equal intervals (At = xs/M) of 'c and the result is integrated. The brackets then
become

_s_l-'4(t) El(It- xl)dt- 2 _4 + _-4wE2(x)

1 M-1 )E2(ts-'0 + _ Y. (_ii+l-_ii)[E3(Iti+l-'cjl)- E3(Iti-zjl)]
i=0

(A2)

The series is evaluated at a constant x (starting with x = 0), with the dummy variable t ranging

from t = 0 to ts. This leads to one value of Q corresponding to that xj (or to 1"1,which is related to x

by eq. (38)). Then xj is increased by A'c and the entire process is repeated until 1:= 'Cs. The method can
be illustrated in detail by use of table A1.

At the end of each integration of the energy _uatio_n (37), new profiles of the various

thermodynamic and transport properties (including T and K) and the optical depth x axe obtained
as functions of rl from the new profiles of g. The resulting optical depth at the shock Xs = ts (= 0.10

for purposes of illustration in the table) is divided into M (= 10 in the table) equal intervals in x

and t so that x0 = 0...xj =jA...XM = % = MA and tO = 0...ti = iAt...tM = ts = MAt. A table of _i,

-4Ti+1 - _ii and, for each value of t, a table of E3(Iti - 'el) corresponding to ti is formed. Now it is

easy to see the application of the table for evaluating the right side of equation (A2). The term

E2(ts - xj) is evaluated by use of the table and the recurrence formula (57). The series is evaluated at

each xj (for example, 0.02) using column 3 and the column corresponding to xj (column 7).

Because of the symmetry of the table E3(Iti - xl) about its diagonal, the table can be reduced to

only two columns of E3 values. It is noted that the column corresponding to xj differs from that of

xj-1 only in that the former is shifted downward one step and the top value in the xj column is the ith

value in the xj = 0 column. Thus, using the xj = 0 column as a master column plus one working xj
column makes it possible to generate the next working column. In that way, only 2(M + 1) values of E3
need be retained in the digital computer memory instead of (M + 1) 2 values. A very large saving in

memory space is achieved for large values of M.
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In similar fashion,the integralin theheat-transferequation(50)canbereplacedby a finite series

2 T4(t)E2(t)dt- T-4w=-2 E3(ts) + _- Ei___o(_ii*l-_i)[E4(ti+l) - E4(ti)] t
(A3)

Here, '¢ = 0 and the series can be evaluated by a one-column table of E4(ti).
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CHAPTER 8

HYPERVELOCITY FLOW FIELDS WHICH HIGHLIGHT THE EFFECTS OF MASS

ADDITION

INTRODUCTION

In this chapter, many solutions of the viscous shock layer equations with mass addition are

obtained. As before, flow-field equations include the effects of heat conduction, diffusion of reacting

species, and emission and absorption of gaseous radiation for dissociated and partially ionized air in

chemical equilibrium. Convective and radiative heating rates with mass addition are obtained from the
solutions. Algebraic equations are derived for predicting the nose radius that minimizes total heating

rates at a given flight speed and shock-layer pressure level. Values for the corresponding natural abla-

tion rate, both the intrinsic and the effective heat of ablation, the ratio of radiative to convective heating

rate, surface shear stress, and shock-wave standoff distance are given. The effects of ablated gases that
radiate more strongly than air are examined. Rules for scaling flow-field structure with mass addition

are discussed. Solutions without mass addition at low Reynolds numbers where external vorticity,

energy depletion, and flow energy limiting are important are compared with existing theory and experi-

ments. This chapter is largely the text of a report originally published as reference 1.

The study of mass addition in the stagnation region is of interest because any object, blunt or

pointed, which enters the atmosphere at high speed will generally have a blunted stagnation region as
the material suffers thermal erosion. Interest is further enhanced because the aerodynamic heating rate is

likely to be a maximum in the stagnation region.

The hot, thin gas cap over the forward surface of an object entering a planetary atmosphere is the

host to a myriad of interrelated physical phenomena. The study of the gas cap is especially cumbersome

if the flow field is a mixture of air and foreign species which were added to the flow because the surface

is ablating. The knowledge of mass addition effects at speeds below which ionization and gaseous radi-

ation effects may be neglected is highly developed from both the flow-field and materials points of

view. (A small part of the extensive literature on the subject will be brought into the discussion sub-

sequently where appropriate.) On the other hand, mass addition at speeds greater than 30,000 ft/sec for

which the gas cap is both ionized and radiating has received comparatively little attention.

The present purpose is to examine the effects of mass addition at flight speeds greater than

30,000 ft/sec as it influences and is influenced by some of the many other phenomena, parameters, and

physical properties of the gas cap. To this end we consider mass addition in the general sense, transpi-
ration, and in the special sense, ablation.

For mass addition in general, we particularly want to know its influence on convective heating.

Is heat blockage as effective at the higher speeds as it is at the lower speeds? Do the existing correlation

formulas obtained for lower speeds apply at hypervelocity?

With respect to ablation, we are especially interested in finding the conditions for which the total

heating rate at a given flight condition and given material is minimized, for two reasons. First, minimum

heating of itself is intrinsically advantageous. Second, it gives one ideal situation in terms of nose radius

and ablation rate at each flight condition for which we can examine some of the other questions of
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interest, thus affording some economy in the range in which other parameters need to be varied. We

obtain an appreciation of what may be achieved under advantageous conditions.

Other questions have to do with the effect of mass addition on related quantifies. For example,

we may expect that mass addition will alter the flow-field structure and change the standoff distance. At

once the question arises: what is the effect of altered standoff distance on radiative heating? Moreover,

the species added to the flow field may be expected to radiate differently from air. The question is,: how

important might this effect be? Some ablating materials suffer from lack of physical strength, so we are

interested in the magnitude of viscous shear stresses at the surface and how they compare with pressure

stresses. We are, of course, concerned with the relative importance of radiative to convective heating
because it bears on the type of surface useful for heat-shielding, and it indicates where improvements in

our knowledge are more important--in gaseous radiation emission properties or in total thermal conduc-

tivity of the gas. Ablation rates and effective heat of ablation are important to determine at speeds
greater than 30,000 ft/sec.

Because much of the experimental work on mass addition is performed in ground-based facilities

for which both the entry object and the environment must be modeled, we wish to examine the problem
of scaling mass addition effects.

Finally, because of interest in pointed or very slightly blunted entry bodies, low Reynolds num-

ber (based on nose radius) effects or external vorticity effects have become important. This problem will
be examined briefly.

GENERAL FEATURES OF SOLUTIONS

In this study we are concerned with both the structure of the stagnation-region flow field (which
will be obtained from solutions of the flow-field equations) and with quantities derived from flow-field

solutions. The details of the method of solution of the flow-field equations are contained in Chapter 7
and in references 1 and 2.

Briefly, the conservation equations for mass, momentum, and energy are solved in the stagnation

region of blunt bodies from the body surface to the shock wave. Momentum transport by viscosity and

energy transport by conduction, diffusion of reacting species, and emission and absorption of radiation
are included in the integro-differential equations.

The thermodynamic and transport properties (radiative transfer sometimes excepted as discussed

subsequently) of the mixture of air and injected gases are assumed to be those of partially dissociated
and ionized air in chemical equilibrium (ref. 2). This assumption should lead to reasonable results even

if the injected gases become ionized, if the ablation products are nitrogen, oxygen, and carbon com-

pounds, the reason being the similarities among these species and their compounds. That is, the atomic

weights of monatomic species are nearly alike, as are the molecular weights of diatomic species. More-

over, the dissociation energy of CO2 is close to that of 02; that of CN like that of NO; and CO like N2;

while CO, N, and O all have nearly the same first ionization potential (which is not radically different

from that of C). Actually, the bulk of the injected species will be near the wall of the body where the

temperature and degree of ionization are suppressed, and the argument of Lees (refs. 3 and 4) may be
employed. For nonionized gas mixtures, Lees has shown that it is not necessary to understand the

extraordinarily complicated details of the chemical interaction between the atmospheric gas components
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andthevaporizedsurfacematerialinsofarasconvectiveenergytransportis concernedaslong asthe
molecularweightsandcollisioncrosssectionsof the injectedgasandair areof comparablesize,or that
theratioof massdiffusivity to thermaldiffusivity (Lewisnumber)of themixture is nearunity.

On theotherhand,radiativeIransportbythemixtureof injected vapor and air may be signifi-

cantly different from that of air alone. This behavior is allowed for in the governing equations by

including a quantity proportional to the injected species concentration in the Planck mean mass absorp-

tion coefficient expression and a diffusion equation to account for this species. In the results to be pre-

sented, radiation from injected gases is specified to be like that of air except where stated to the

contrary.

The results of the analysis have been tested against those by others where possible in order to
establish the validity of the method. In reference 2 it was shown that the calculated structure of the flow

field exhibits both an isoenergetic shock layer and a boundary layer in the low speed (such that energy

depletion by radiation is negligible), high Reynolds number regime as it should. The analysis repro-

duced the well-known effects on convective heating of the assumption pit = const when pit was artifi-

cially set constant. The shock standoff distances predicted by this method agree with those predicted by

other methods (e.g., ref. 5). When radiation coupling is negligible, it produces convective heating results

at high speeds (up to 50,000 ft/sec) that agree with the boundary-layer results of references 6 and 7,

which use the same transport properties. It will be seen subsequently that in the low Reynolds number

regime the method leads to flow fields which exhibit the expected shock-layer vorticity structure and the

corresponding enhanced surface shear stress and convective heating rates. One additional test of the

method is shown in figure 8-1. The solid lines are enthalpy profiles across the flow field for the nose
radii and flight conditions noted, and the symbols are the results of K. K. Yoshikawa (ref. 8), corre-

sponding to the one-dimensional flow of radiating air behind the shock wave. It is seen that both

analyses show that the shock layer is nonisoenergetic and both give the same results for that half of

the flow field nearest the shock. The present analysis shows lower enthalpy and larger enthalpy

1°F

_"' I_ _ PRESENT ANALYSIS

|_ FOR APPROPRIATE

.4 _/ CONDITIONS LISTED BELOW

U, ft/sec R, ft PS' arm

! I<> 40,000 1 10

[ REF. 8 J 11) 50,000 1 '

.2 I [ • 50,000 5 1

/
I I i I I I

0 .2 .4 .6 .8 1.0

y/8

Figure 8-1.- Comparison of enthalpy profiles with those of reference 8.
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gradientsasaresultof convectivetransportin thathalfof theflow field nearthebody,becauseneithera
bodynorenergytransportby conductionwasincludedin theone-dimensionalanalysisof reference8.

Beforemassadditioneffectsarediscussed,abrief commentshouldbemaderegardingterminol-
ogy.Throughouttherestof thepaper,commentsrelatingto massadditionandinjectedgases,in general,
applyto both forcedmassaddition(transpiration)andnaturalmassaddition(thermalerosionor abla-
tion).Whenourcommentsarespecializedto thermalerosiononly, thewordablationwill beused.

EFFECTS OF MASS ADDITION ON HEATING RATES

Radiative Heating

Mass addition can affect radiative heating in two ways: by altering the temperature and structure
of the flow field and by adding species which radiate differently from air. However, results of numerous

flow-field solutions 1 with mass addition show that (except for a combination of low Reynolds number
and strong injection of gases which radiate more strongly than air, discussed subsequently) radiative

heating is much less affected by mass addition than is convective heating.

Mass addition of gases like air tends to thicken the shock layer, thus tending to enhance radiative
heating, but it also tends to cool the flow field--inhibiting radiative heating. In almost all of the solu-

tions, the net effect of injection of a species which radiates like air was to increase radiative heating

modestly. For example, for a flight speed of 50,000 ft/sec, a nose radius of 0.25 ft, a shock-layer pres-
sure level of 1 atm, and a surface mass flux of 13% of the free-stream mass flux (fw = -1.5), the
radiative heating was enhanced about 24%.

Moreover, it was shown in figure 9 of reference 2 that for high Reynolds number, the bulk of the

injected species remains close to the vehicle surface where the temperature is low compared with that

behind the shock wave. Thus the radiant flux at the surface is enhanced only 7% by a gas which emits
50 times as strongly as air injected at the same rate (fw = - 0.4, or mass addition rate 2% of the free-

stream mass flux; same flight condition as above with R = 1 ft).

On the other hand, it will be shown subsequently (in the discussion of fig. 18) that if the

Reynolds number is low, injected species will also be present in the hot part of the flow field and need

not radiate much more strongly than air in order to have an appreciable effect on radiative heating.

Convective Heating

Convective heating is very strongly influenced by mass addition. In the flight regime for which

air is dissociated but not ionized, many studies (ref. 9) have employed a linear approximation relating
_t (the ratio of convective heating with mass addition to that without) to the product of mass addition

rate and driving enthalpy divided by the convective heating without mass addition. The linear _ was
based upon an empirical correlation of experimental and theoretical transpiration results from refer-

ences 10-12. Swann (ref. 13) and Swann and Pittman (ref. 14) obtained a quadratic expression for _ in

IAII of the results of this section of the paper correspond to wall temperatures between 1500 and 3000 K.
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termsof theabovevariablesby anempiricalfit of theresultsof idealgasboundary-layersolutionsof

Beckwith (ref. 15).

In the present analysis, the influence of mass addition on convective heating was obtained from

the results of the ionized radiating flow-field solutions (both qc and qco, which are convective heating

with mass addition and without, respectively, were obtained from the solutions). The parameter _ for

speeds of 40,000 and 50,000 ft/sec is shown in figure 8-2 as a function of fw, the dimensionless stream
function at the wall. The quantity fw is proportional to the mass addition rate by the relation

fw_ Ps_sU(j + 1) (1)
mw = pwVw =- R

1.0

.8

o.6

II

-:r .4

.2

Ps/R 0.1 0.25 0.5 1.0 2.0 5.0

0.1 [] [] • t_" []- I

1.0 0 • • (3" (}- 0,

10.0 0 '_ • _ _ _1_

= e-V_-(-fw)3/2 (AT 50,000 ft/sec}

I_/ REF. (9) (50,000 ft/sec, TEFLON)

/// REF. (9) (40,000 ft/sec, TEFLON)

__ _ = e-_-(-fw)3/2 (AT 40,000 ft/sec )

\\

NN

1 2

-f w

m

Figure 8-2.- Separate correlations of results of blowing on convection at U = 40,000 and
50,000 ft/sec.

For the moment, attention is directed to the solid curves of the figure. (The dashed lines are an applica-

tion of the linear _ approximation and will be discussed in a subsequent section of this chapter.) Each
solid line correlates results for one flight speed, various nose radii, and various shock-layer pressure

levels, as can be seen from a comparison with the plotted symbols. Each of these curves is represented

by the exponential 2

2Some experiments by Vojvodich, Pope, and Dickey of Ames Research Center at conditions corresponding to subsatellite
speed indicate that _ for strong ablation of some materials may approach an asymptote different from zero, possibly
of the order of 10-1 (this effect was remarked upon in ref. 16). An appropriate form of _ for that case would be
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xg = e 'b(-f_)n (2)

where b is a function of flight velocity alone and n is 3/2. Similar curves can be constructed for other
flight velocities. Note that a given fw is less effective in retarding convective heating at higher speeds.

n

We can correlate results over a wide range of conditions by expressing b as a function of U,
where U is flight velocity in units of 10,000 ft/sec. That is, results of 36 mass addition solutions for

nose radii 3 ranging from 0.01 to 5 ft, flight speeds from 30,000 to 50,000 ft/sec, and shock-layer pres-

sure levels from 0.1 to 10 atm are correlated in figure 8-3 by use of equation (2) with

1.0

.8

d _° .6

d_
II

"_ .4

.2

I

0 6

3/2

I I I _ "3
1 2 3 4 5

145/_2)(1-300/_ 6)(-fw 13/2

Figure 8-3.- General correlation of result of blowing on convection. (The points are identified in
table I.)

V = a + (1 - a)e--b(-fw)n, where a is the value of the asymptote. The asymptote does not appear to be caused by wall

temperature effects alone. In the examples of figures 2 and 3, no asymptote other than zero could be distinguished, even
though wall temperature was changed from 1500 to 3000 K. For example, at 40,000-ft/sec flight speed, 1-atm shock-layer
pressure level, 1-ft nose radius, and fw = -1.0, both qc and qco changed as Tw was changed from 1500 to 3000 K, but their
ratio _ remained the same to four decimal places, 0.0626. It is conceivable that molecular weight of surface vaporsmay
have something to do with the asymptote. For example, the vaporization temperature of Teflon is low enough that surface
vapors may have a molecular weight of 100 rather than that between 16 and 30 for the air injection (or for that matter, 15 for
val_'izing phenolic nylon) under consideration. This large a disparity in molecular weight may be significant and would
tend to raise _ for the higher molecular weight gas. The presence of an asymptote for ablation is expected for other
reasons; that is, if ¥ _ 0, qc _ 0. For test models that are small, qr is also negligible. Thus in the extreme, the heating
which causes ablation vanishes and some asymptotic value of _t or finite value of q¢ is necessary to initiate ablation.

3Two points should be mentioned in connection with the small nose radii. First, the correlation holds for examples for which

there is strong vorticity in the entire flow field as long as qco also includes the external vorticity effect. Second, the chemi-
cal equilibrium assumption is somewhat in doubt for the small nose radii, a point which will be discussed subsequently.
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TABLE I.- CONDITIONS FOR POINTS SHOWN IN FIGURES 8-3 AND 8-4

Group Point Ps, atm U R, ft -fw Comments

1

2

3

4

5

6

7

8

1 1.0 4.1 0.01 0.1

2 1.0 4.1 1.0 .1

3 1.0 5.0 1.0 .2

4 1.0 5.0 1.0 .4

5 1.0 5.0 1.0 .45
6 1.0 5.0 .1 .5

7 1.0 5.0 .25 .5

8 1.0 5.0 .5 .5

9 1.0 5.0 1.0 .5

10 1.0 5.0 2.0 .5

11 .1 5.0 5.0 .5

12 10.0 4.0 .1 .5

13 10.0 4.0 .25 .5

14 1.0 4.0 1.0 .5
15 1.0 3.0 1.0 .5

16 1.0 5.0 1.0 .75

17 1.0 5.0 .1 1.0

18 1.0 5.0 .25 1.0

19 1.0 5.0 .5 1.0

20 1.0 5.0 1.0 1.0

21 .1 5.0 5.0 1.0

22 1.0 5.0 1.0 1.25

23 1.0 4.1 .01 1.0

24 1.0 4.1 1.0 1.0

25 10.0 4.0 .1 1.0
26 10.0 4.0 .25! 1.0

27 1.0 4.0 1.0 1.0

28 1.0 3.0 1.0 1.0

29 1.0 5.0 .1 1.5

30 1.0 5.0 .25 1.5
31 1.0 5.0 .5 1.5

32 1.0 5.0 1.0 1.5

33 .1 5.0 5.0 1.5

34 10.0 4.0 .25 1.5

35 1.0 4.0 1.0 1.5

36 1.0 5.0 1.0 2.0

17 and 18 appear as one point on figures 8-3
and 8-4

25 and 26 appear as one point on figures 8-3
and 8-4

29 and 30 appear as one point on figures 8-3
and 8-4

31 and 32 appear as one point on figures 8-3
and 8-4

34 and 35 appear as one point on figures 8-3
and 8-4
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(3)

and n = 3/2. This formula is useful for extrapolation to flight speeds above 50,000 ft/sec, but cannot be

used for speeds much below 30,000 ft/sec because it changes sign at about 26,000 ft/sec. The same mass

addition solution results are correlated by letting

b = 0.706 + 1.6_- 0.28_ 2 (4)

and n = 3/2. The result is shown in figure 8-4. This formula can be used to extrapolate to speeds below

30,000 ft/sec, but cannot be used for speeds much above 50,000 ft/sec, because it changes sign at about
61,000 ft/sec.

1.0

.8

o .6

o"

II

.4

.6U_- 0.28U_-2)(-fw )3/2

1 2 3 4 5

(0.706 + 1.6_- 0.28U_2)(-fw )3/2

Figure 8-4.- General correlation of result of blowing on convection. (The points are identified in
table I.)

The flight condition, nose radius, and value of fw for each point shown in figures 8-3 and 8-4

are listed in table I. Groups of points are numbered consecutively from left to right on the figure. Points
within a group are numbered consecutively from top to bottom.

These same results are also compared in figure 8-5 with the linear _t approximation of refer-

ence 9 and quadratic _ approximation of reference 14. The points on the figure correspond to our

solutions listed in table II, where now the points are simply numbered from left to right in figure 8-5. In

the figure, if the constant 0.49 in the linear approximation corresponding to Teflon (which would be 0.5
for phenolic nylon (ref. 9)) is changed to 0.6 (mentioned. by ref. 9 as obtained from refs. 10-12), the fit is

improved for the initial part of the data out to about Hsm/(--qco) equal to unity. Clearly, however, it
cannot be made to fit the results beyond unity.
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= 1 - 0.6(Hs_/-qco)(REF. 8 FROM REFS. 10, 11, 12)

_ = 1 - 0.49 (Hsrh/-qco) (REF. 9)

/ = 1 - 0.72(Hs_/-qco) + 0.13(Hsr_/-qco )2

(REF. 14)

0

.5 1.0 1.5 2.0 2.5 3.0 3.5

Hs_/-qc ° =- (Hs/-qco) (-fw Jps/ls U(j + 1)/R)

Figure 8-5.- Present results compared with other correlation formulas. (The points are identified in
table II.)

The quadratic expression of reference 14 fits the present result well for Hsrn/(-qco ) equal to

unity also, but not beyond. That approximation is set to zero when Hsm/(-qco) is 2.5. However, three

points are shown to the right of 2.5 for which _ _ 0. Subsequently, during the examination of special
conditions which minimize total heating rate, it will be important to have a simple correlation which

must differ from zero at the high mass addition rates, for if _/ were zero, the radius which minimizes

total heating would be that which minimizes radiative heating, namely, zero. The exponential correlation

(eq. (2)) will be especially useful in that regard.

The two approximations were obtained from relatively low-speed results for which the air was
either dissociated or inert, and it is not surprising to see that they do not fit the present results which

include (among other differences) th.ermodynamic and transport properties of partially ionized air and

are extended to higher values of Hsm/(-qco).

The simple expression, equation (2), describing the effects of mass addition on convective heat-

ing at high speeds can now be applied with other information to the special case of mass addition by
ablation.
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TABLE II.- CONDITIONS FOR POINTS

SHOWN IN FIGURE 8-5

Point Ps, atm

1 1

2 1

3 1

4 1

5 1

6 1

7 .1

8 1

9 1

10 1
11 1

12 10

13 1

14 1

15 1

16 10

17 1
18 1

19 1

20 .1

21 1

22 1

23 1

24 1

25 .1

26 1

27 1

28 10
29 1

30 1

31 1

32 10

33 1

34 1

35 1

36 10

o R, ft -fw

4.1 0.01 0.1

4.1 1 .1

5 1 .2

5 .1 .5

5 1 .4

5 .25 .5

5 5 .5

5 .5 .5

5 1 .45
5 1 .5

5 2 .5

4 .1 .5

4 1 .5

5 .1 1

5 1 .75
4 .25 .5

3 1 .5

5 .25 1

4 .01 1

5 5 1

5 .5 1

5 1 1
5 .1 1.5

5 .25 1.5

5 5 1.5

5 1 1.25

5 .5 1.5

4 .1 1
4.1 1 1

4 1 1

5 1 1.5

4 .25 1

3 1 1

5 1 2

4 1 1.5

4 .25 1.5
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ABLATION

General Relations for Ablation Quantities

Subliming ablators are attractive for heat protection because of heat absorption due to vaporiza-

tion and the heat blockage effect in the boundary layer. Moreover, high-temperature subliming ablators

have still another asset--the rejection of heat by reradiation.

On the other hand, at conditions corresponding to subsatellite speeds, subliming ablators have at

least one liability from the heat-rejection point of view. A theoretical study of Scala (ref. 17) shows that

reactions between air and a graphite surface impose a significant heat load on the vehicle. Theoretical

studies by Harmett and Eckert (ref. 18) and Cohen, Bromberg, and Lipkis (ref. 19) show enhanced con-

vective heating caused by gas-phase reactions between air and ablated vapors. Experimental results of

Vojvodich and Pope (ref. 20) confirm that both heterogeneous and homogeneous combustion between

air and charring ablators impose a heat load comparable to the net convective heating (qcoV) at low lev-

els of shock-layer pressure (10 -3 to 10- 2 atm) and driving enthalpies up to about 8000 BtuBbm. How-

ever, they show that the relative importance of combustion diminishes with increasing driving enthalpy

and increasing pressure level. Very likely, the reason for diminished importance of surface reactions
between air and ablation material is that higher injection rates prevent air from reaching the surface at

the more extreme conditions. An analogous phenomenon was studied theoretically by Chung (ref. 21) in

which he showed that heterogeneous recombination reactions are inhibited by air transpiration at a cold

wall, preventing dissociated shock-layer air from reaching the surface. Further, the relative importance

of energy release by gas phase reactions between air and injected species is diminished, probably

because of the increased energy release by recombination reactions of air components themselves at the
more severe conditions.

Thus we assume that at the higher levels of shock-layer pressure (10-1 to 10 atm) and higher

enthalpies (20,000 to 50,000 Btu/lbm) with which the present study is concerned, one need not sort out

gas-phase combustion reactions from other recombination reactions. So, we appropriate Lees' argument

mentioned previously and neglect the details of the combustion reactions, but consider for practical pur-

poses that their effects are included implicitly in qc, the convective heating results.

At high flight speeds, radiative heating must be included with convective heating as causing

ablation. The ablation rate for a given vaporizing material is related to the actual total heating flux, qT,

by (see eq. (45) in Chapter 4)

pwVw = mw = -qT/(hmw - hminterior) (5)

where Vw is the mass average velocity at the wall, hmw is the enthalpy of the material gases at the wall,

hminterior is the enthalpy of the unheated solid, and the minus sign arises from the convention that posi-
tive flux is outward from the surface (that is, q means flux; it will be represented by a negative number

if the wall is receiving heat). Now we define the intrinsic heat of ablation as

ha = hmw - hminterior (6)

The definition of the mass averaged velocity, Vw, applied at the wall can be written
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mw= pwVw= (PairVair)w+ (pmVm)w (7)

where VairandVm aretheabsolutevelocitiesof theair andmaterialgases.In orderfor air not to
penetratethesurface,(PairVair)w= 0. Thencombiningequations(5)-(7) yields

- qT= mha (8)

wherethesubscriptw hasbeendroppedfrom m.Moreover,m refersonly to ablated species.

Let qr be the net radiative heat flux accepted by the wall. It is a combination of the accepted

incident radiative flux from the gas and the reradiated flux from the wall; thus

qr = qrg + EwOT_ (9)

where Ew is the surface emissivity, and _ is the Stefan-Boltzmann constant. (See also eqs. (56) and

(64) of Chapter 6, and eq. (49) of Chapter 7.)

To express qT in a simple way, assume that (1) there is no coupling between radiative and con-

vective heating rates (a very reasonable assumption for the application to moderate sized bodies made

subsequently) and (2) qrg is not a strong function of -fw or mass addition rate (which will be verified
for conditions of special mterest in the next section), and that (3)

qrg = -{XwBR (10)

where B is a constant for a given flight condition and Otw is the surface absorption coefficient.
Numerical solutions indicate that, for purposes of the estimates in this section, equation (10) is a good

approximation even though the flow field is nonisoenergetic, as long as B is obtained from the non-
isoenergetic solutions at a given flight condition. Because no coupling is assumed, we can use the

simple, no-blowing, convective-heating correlation (which, by the way, excludes external vorticity
effects) of Hoshizaki (ref. 6), which can be put in the form

q-5-c= qco = -4.03× 10-5(2E) 1/4_0"190--I s - Hw)
_t

(11)

where the units on 4.03×10 -5 are (lbf) 1/2 sec/ft 3/2 and the units on qco are lbf/ft 2 sec. Combining equa-

tions (2), (5), and (9)-(11) leads to an expression for total heating rate

4 1/4_.0.19(H w &/-_-s e_b(_fw)n- qT = 0_wBR - EwT w + 4.03× 10-5(2e) - Hw)
V R

(12)

It is convenient to define
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awB
A-

ha_/PsPsU(j + 1)

4.03x 10-5(2{:) 1/4_.0"19(Hs - Hw) _s
C-

ha_Ps_tsU(j + 1)

D___

¢3tw

haa/PslasU(j + 1)

(13)

In terms of these quantities, equation (12) becomes

[ 41C e_b(_fw)n _ DT w
-qT = ha_/ps_tsU(j + 1) AR +

(14)

Now if equations (1), (5), and (8)-(11) are combined, a transcendental expression is obtained for

the natural blowing rate parameter fw in terms of R, the flight conditions, and material properties:

4
-fw = AR3/2 + C e-b(-fw)n - DR1/2 Tw (15)

Another quantity of interest is the effective heat of ablation (where the subscript o means with-
out mass addition).

-qTo (qco +qro)
heft - - (16)

m m

If we assume

qro = qr (17)

which is approximately true for the moderate ablation rates which will concern us in this and the next
section (and will be demonstrated at the end of the next section), it is simple to show that

qT -1-[1-e -b(-fw)n] qc___?_o

qTo qTo

(18)

Combining equations (8), (13), (16), and (18) leads to

heft=ha l+(_fw)
(19)

where -fw is obtained from equation (15).
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Now it is instructiveto specializesomeof theseablationrelationshipsstill further--to thecaseof
convectiononly.

Ablation Due to Convection Only

For flight speeds greater than satellite entry speed, both radiative and convective heating are

important in determining ablation rates, even for small nose radii (which will be shown subsequently).
However, if for the moment convection is assumed to be the only heating mode, and both radiation and

reradiation are excluded, we are led to some interesting comparisons. For these conditions, both equa-
tions (15) and (19) reduce to simpler forms; thus

-fwe b(-fw)n = C (20)

and

heft eb(_fw)n 1 (21)
ha _

respectively. So we see that for the convective case, both the ablation rate in terms of fw (eq. (20)) and

effective heat of ablation (eq. (21)) for a given material are independent of nose radius and ambient den-

sity (or pressure level), but depend only on flight speed (because b is a function of -1J alone (eq. (4))
and C is essentially a function of qZ because in equation (13)

(Hs - Hw) dps/Ps_ts --- (03/2) _/podps_ts

and the last square root is a very weak function of ambient density. Lees (ref. 22) and Bethe and Adams

(ref. 23) reached a similar conclusion for melting and glassy ablators at subsatellite speeds; that is,
velocity is the important parameter.

It is interesting to compare this fw and heft result obtained from gt that is exponential with

respect to (-fw) n (eq. (2)) with those obtained from _ that is linear with respect to (-fw) of reference 9.
The gt of that paper written in terms of fw by use of equation (1) is

= 1-13 (-fw)(Hs-Hw)/,,_ / Pst.tsU(j + 1)

qco V R (22)

where 13 is a constant for a given wall material. The corresponding fw for convection only (for that
paper) obtained from equation (11) is

-fw=
4.03x 10-5(2e) I/4_j0"19(H s - Hw)

[ha + 13(Hs - Hw)] Ps
Pst.tsU(j + 1)

(23)
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or

C
-f. = (24)

1 + (13/ha)(Hs - Hw)

while heft for the linear _t would be

heft = 1 + ---_ (Hs - Hw) (25)
ha ha

The comparison of the natural fw for Teflon as predicted by the two results (eqs. (20) or (22) in
(24)) is shown in figure 8-6 (using 13= 0.49 and ha = 2.38x107 ft2/sec 2 from reference 9 for Teflon). 4

It is seen that the two results are in close agreement and that both depend strongly on velocity, but not

on pressure. Similarly, the results of heft/ha as a function of velocity are in close agreement for

convection only (using eqs. (21) and (25)) as shown in figure 8-7.

3.0

2.5

2.0

-fw 1.5

1.0

.5

I

0 7

p, LINEAR EXPONENTIAL ,,
(REF. 9) (PRESENT RESULTS) /

0.1 [] • /

1.o - _ //

1o.o o ¢ //

//

I I I I I I

1 2 3 4 5 6

Figure 8-6.- Wall blowing parameter for natural ablation of Teflon at stagnation region--

convection only.

4In this application and throughout the rest of this chapter, the values of b and n for a given flight condition were obtained

by passing equation (2) through results from the two flow-field solutions having the highest values of -fw. Numerically,

b and n are slightly different from equations (3) and (4) for b and 3/2 for n obtained for the general correlation.
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Figure 8-7.- Effective heat of ablation of Teflon (convection only).

The agreement between the two methods might indicate that e b(-fw)n of equations (20) and (21)

equals 1 + ([_/ha)(Hs - Hw). At first glance one might suspect that these natural blowing rates are small

enough to be on the initial part of the _ curve where the exponential can be replaced by the first two
terms of its series. It turns out that this is not the case, as can be seen in figure 8-2. The solid curves and

dashed lines correspond to the exponential and linear _ (to eqs. (2) and (22)), respectively, for the flight
speeds shown. Although agreement between the solid curve and dashed line is better at the lower

speeds, in neither case is the solid curve well represented by the dashed line except at the one point

where they intersect. That intersection just happens to occur very near the natural value of fw in each

case. Thus the appare,lt agreement in the results does not imply any general agreement in the function V
but, rather, is considered to be fortuitous.

Now we turn again to the case of ablation caused by both radiative and convective heating to
examine some special conditions. In this way we can acquire some notions of the behavior of various

phenomena under definable favorable conditions.

Conditions at Minimum Heating Rate With Ablation

Because of the many combinations of variables, parameters, and phenomena associated with the

ablation problem, it is convenient to seek an optimum condition, in terms of minimizing total heating
rate or total mass loss rate of a given material at each flight condition, and then present some of the other

quantities of interest correspondingly. In this way we can acquire some notions of the behavior of

various phenomena under definable favorable conditions.

Nose radius and ablation rate for minimum heating rate-Equation (14) shows that at a given

flight condition, convective heating rate becomes large with small R whereas radiative heating rate

becomes large at large R. 5 Thus there is an intermediate value of R for which total heating rate is a

minimum. This is illustrated graphically for one flight condition in figure 8-8. The family of solid light

curves is calculated by the use of equation (12) for specified values of fw, and represents approximately

5See "Approximate heating generalizations" following figure 7-16 for further di_ussion.
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the flow-field solution results. The family of dashed curves is calculated for Teflon by use of equations

(8) and (1), also for specified values of fw (the physical properties used for Teflon and phenolic nylon
are listed in table III). The intersection of a line of each family corresponding to one value of fw

denotes a combination of qT, R, and fw that satisfies both the flow-field results and the material

behavior. The heavy solid curve is the locus of such intersections. Its minimum gives the optimum nose
radius R*, which minimizes total heating rate (and total ablation rate) for Teflon for this flight con-
dition. Thus R* is 0.109 ft and the ablation rate is given by -fw = 1.94 in this example. The right

branch of the heavy curve shows an interesting result. That is, for a nose radius half again as large as

R*, convective heating has been essentially eliminated by strong ablation, and therefore qT increases

linearly with R and is independent of ablation rate (-fw = 3 line coincides with -fw = o_), as it should

be for radiative heating only, according to the approximation of equation (10). Correspondingly,

ablation is caused by radiative heating alone and its rate must be increasing in proportion to qT, and

thus R, in accord with eqaation (8). This points out the potential importance of reflecting ablative

surfaces for heat protection for radii greater than R*.

-- FLOW FIELD

RESULTS, EQ. (12)

---- MATERIAL

8 × 105 BEHAVIOR, EQ. (8) _ ...

7 3,...°°

I I k't_ \. \. J//" LOCUS OF COMPATIBLE

"_ rl_ _._ "\k_Y_l CONDITIONS

1.8
11_/101 l ,o

0 .08 .16 .24 .32 .40

R, ft

Figure 8-8.- Optimum nose radius for Teflon at U- = 50,000 ft/sec, Ps = 1 atm (Otw = ew = 1).

Analytically, R* and fw for a specific material and flight condition are obtained as follows. The

partial derivative of qT with respect to R (obtained by differentiation of eq. (14) noting that fw is a

function of R by eq. (15)) is set to zero. After some algebra, the expression

...4 ,-,1/2fw + Ce-b(-fw)n [bn(- fw) n + 3] - Ulw_ = 0 (26)
2

is obtained. The simultaneous solution of equations (15) and (26) yields the optimum nose radius and

natural ablation rate (fw) for a given material and flight condition.

It can be noted that for no reradiation (DT4R 172 negligible), equation (26) is uncoupled from

equation (15) and the former can be solved directly for fw after which the latter can be used to obtain

the optimum R. Thus we obtain the result that fw is independent of the radiative properties of the gas

expressed by A in equation (13). Although fw depends only on the convective heating properties of
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thegas(expressed by C in eq. (13) which appears in eq. (26)), it differs from the fw for convection
only (eq. (20)) for the following reasons. If equation (15) is satisfied by AR 3/2 , 0 by use of the fw

obtained from equation (26), it cannot be satisfied for AR 3/2 = 0 by the same fw. Moreover, if radia-

tion is zero, we cannot use equation (26) to calculate fw, but must revert to equation (20).

TABLE III.- PROPERTIES OF ABLATING SURFACES a

Material

Teflon b

Phenolic nylon

h a, ft2/sec 2

2.38x107 (9)

3.755x107 (9)

Tw, K

!000

3700 (50)

C_0

1 and 0.5

0.6 (50)

1 and 0.5

0.6 (50)

aValues in the table are estimates made from information in the

references shown in parentheses.

bThe temperature shown for Teflon is higher than the 800°F (or

700 K) given by reference 9. However, it is of no consequence

because reradiation from the higher temperature is still negligible. It

should be noted that in applying our _ results to Teflon, we have not

made any allowance for the presence of a finite asymptote (see foot-

note 2). If indeed a finite asymptote does exist at hypervelocity, we
must consider our Teflon results to apply instead to a material which

has the properties shown above but which does not have a finite

asymptote.

For radiation different from zero but negligible reradiation, heft is independent of the radiative

flux because fw used in equation (19) is independent of radiative properties. The same is true for
because of equation (2). On the other hand, the optimum R obtained from equation (15) depends on the

radiative properties. Of course, th depends on the radiative properties because it depends on R (eq. (1)),

and the same is true for both qc (eq. (11)) and qr (eqs. (9) and (10)).

The optimum nose radius with convection, radiation, and reradiation obtained from equations

(15) and (26) is shown as a function of flight speed in figure 8-9 for Teflon and phenolic nylon. It can be
seen that the optimum nose radius diminishes with increasing shock-layer pressure at a given flight

speed. On the other hand, the optimum nose radius increases as flight speed is diminished, shock-layer
pressure level being constant. These trends can be related to actual entry trajectories, by noting (ref. 2,

fig. 1) that typical trajectories consist of essentially a path of increasing shock-layer pressure at constant

velocity followed by a path of diminishing velocity at constant pressure. Now if the major heating

occurs at constant velocity (the case of plunging probes), total heating rates could be minimized only by

artificially tailoring the nose shape (for example, by pushing concentric rods of progressively smaller

radii out the front of the vehicle in a programmed sequence--a refinement of a suggestion by H. J. Allen

(ref. 24)). On the other hand, if the major heating occurs at constant shock-layer pressure (typical of

g-limited entry), the problem of minimizing total heating rates is simplified because R grows by

ablation naturally in the direction of the growing optimum.
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Figure 8-9.- Optimum nose radius for ablation.

The wall absorptivity, 0tw, is important to both charring and noncharring ablators because it

influences the amount of radiant heat accepted from the gas cap and thus R*. In figure 8-9, if Otw is

diminished by 50% for Teflon (noncharring), R* is increased by about 50%.

The wall emissivity, ew, is important to high-temperature charring ablators for which reradiation

is an important heat-rejection mechanism. For phenolic nylon, reradiation is partly responsible for a

larger optimum nose radius than that of Teflon (for which reradiation is negligible because of its low

vaporization temperature)--by about a factor of 3 in the speed range 40,000-50,000 ft/sec, as can be
seen in the figure. The phenolic nylon calculation for Ps = 1 atm was not extended to lower speed

because of the uncertain wall temperature; that is, the wall temperature becomes a function of the

heating rate at less severe heating conditions.

The ablation rate, in terms of fw, corresponding to optimum heating rate conditions is shown as

a function of flight speed for various pressure levels and absorptivities for Teflon and phenolic nylon in

figure 8-10. The heavy lines and symbols represent minimized total heating-rate conditions, while the

light lines represent the result for convection only (shown previously in fig. 8-6 for Teflon). It is impor-

tant to point out that the difference between the total-heating heavy lines and convective-heating light
lines does not represent the contribution of radiative heating. When minimum total heating rate is con-

sidered, there is a complete rearrangement of convective and radiative contributions. The result is that
the radiative contribution is usually larger (sometimes much larger) than the convective contribution

(which will be demonstrated subsequently in fig. 8-15). The result of the sum of the two readjusted

heating components on fw is shown by the heavy lines in figure 8-10.
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Figure 8-10.- Blasius wall-blowing parameter corresponding to ablation with optimum nose radius.

It is especially interesting to note that for Teflon, optimum fw is a very weak function of both

absorptivity and pressure level. This will have consequences in figure 8-12, where it will be remarked

upon.

The ratio of the surface mass flux to free-stream mass flux is related to fw by the Reynolds
number. Thus

m_ =_fw_/(j+l)
p,,_U eRe

(27)

where Re is the Reynolds number p**UR/t.ts. It should be mentioned that el/2 is almost invariant with

flight speed (between 30,000 and 50,000 ft/sec) at a given level of shock-layer pressure. It only varies at

the worst from 0.233 to 0.278 as pressure level changes from 0.1 atm to 10.0 atm.

The mass flux ratio of Teflon is presented in figure 8-11 for optimum conditions. The location of

the point corresponding to 0.1 atm indicates that relationships at optimum conditions are not systematic

in a simple way. The surface mass flux varies from 2.5 to 25% of the free-stream mass flux between

30,000 and 50,000 ft/sec. Some approximate calculations show that it is reasonable to extrapolate this

result to 70,000 ft/sec. The result is that the mass flux ratio is still less than 0.5 for optimum conditions.

This is in sharp contrast to the values in excess of unity for entry of some meteors for which the nose

radius is very different from R* (Pr_bram meteor, for example, which likely has a radius of the order of
a meter, ref. 25).
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Figure 8-11.- Mass addition ratio for optimum conditions (Teflon, O_w= 1).

In fact, it is apparent from the present optimum results for U = 50,000 ft/sec and Ps = 1 atm

that if nose radius is increased from the optimum of 0.109 to only 0.5 ft, the mass loss ratio will exceed

unity as a result of radiative heating alone.

Now that we have the nose radius which minimizes total heating rate, and the corresponding

ablation rate, we can examine several other interesting quantities corresponding to these conditions.

Effective heat of ablation- The ratio of the effective heat of ablation to the intrinsic heat of

ablation is calculated by use of equation (19) and is presented in figure 8-12. The ratio depends strongly

on velocity, but is relatively insensitive to pressure level (altitude) and, for the case of Teflon, surface

absorptivity. The last is a consequence of the insensitivity of fw to 0tw shown in figure 8-10, and the

fact that heft is very strongly dependent on fw in equation (19). The ratio heft/ha subject to combined
radiative and convective heating is less than that obtained from convection alone, which can be seen by

comparing figure 8-12 with figure 8-7.

In spite of the fact that heff/ha in figure 8-12 is smaller for phenolic nylon than for Teflon, the

actual heft for phenolic nylon is larger. At 50,000 ft/sec, the ratio of effective heat of ablation of phe-

nolic nylon to that of Teflon is 1.13, which includes the reradiation effects. (It should also be remem-

bered that the phenolic nylon is not ablating as rapidly as Teflon for these optimum conditions.)

Effect of mass addition on standoff distance- The ratio of standoff distance with optimum
mass addition (and nose radius) to that without mass addition, _io, was obtained by solving the flow-field

equations using values of R* and fw obtained from figures 8-9 and 8-10. The result is shown in fig-
ure 8-13 for Teflon. For speeds below 30,000 ft/sec, where mass addition rates are low (3% of free-

stream mass flux, fig. 8-11), the standoff distance with blowing is actually less than that without blow-

ing (ratio is about 0.94). This interesting effect occurs at very low mass addition rates over a broad flight

range and may be attributable to a cooling effect that increases the flow-field density (and diminishes

standoff distance) more than enough to overcome the space required for the increase in mass flow in the
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Figure 8-12.- Effective heat of ablation corresponding to natural ablation for optimum conditions.
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Figure 8-13.- Ratio of standoff distance with blowing to that without blowing for optimum conditions
(Teflon, tXw = 1).

flow field. At higher speeds, and thus higher ablation rates, the standoff distance is enhanced by abla-

tion. It is seen that for optimum conditions, the shock layer is thickened by about 50% at a speed of

50,000 ft/sec.

Effect of mass addition on radiative heating- Mass addition can influence gaseous radiative

heating flux in two ways: (1) by altering the standoff distance and temperature distribution in the flow
field (it should be mentioned that gaseous radiation reabsorption is negligible in the regime being con-

sidered), and (2) by adding chemical species to the flow field which radiate differently from air. To
examine the fhst effect, due to alteration of flow-field structure, the foreign species was assumed to
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radiatelike air. Theresultingincidentgaseousradiantflux atthewall asobtainedfrom flow-field solu-
tionscorrespondingto theoptimum R* andfw of Teflon is comparedwith theno-ablationvaluein
figure 8-14.In theflight regimestudied,themaximumeffectof theablationon radiantflux is an
increaseof about17%for theseoptimumconditions.This is in sharpcontrastwith thevery largeeffects
onconvectiveheatingpresentedearlierandsupportstheapproximationsof equations(10)and(17).For
example,for aflight conditionin whichradiativeflux waschanged17%,ablationdiminishedthe
convectiveflux by two ordersof magnitude(to 0.8%of its nonablationvalue).

1.2

1.0

_1 1 [3ps, atm

0.1

A I

4 5

Figure 8-14.- Ratio of incident gaseous radiation flux with ablation to that without ablation at optimum

conditions (Teflon, 0_w = 1).

To examine the second effect, that of introducing species which radiate differently from air,

cz (the rate of absorption in the foreign species relative to that of air (Chapter 7)) was specified to be

different from unity. Briefly, the result is that if a foreign gas that radiates twice as strongly as air
(o_ = 2) is introduced at the same rate, the radiative flux is enhanced at the most by only 5% over the air

value. If the foreign gas radiates 10 times as strongly as air (o_ = 10), the radiative flux is enhanced at the

most by about 50% over its airlike value. Finally, the influence of these radiative properties that differ

from those used in estimating optimum conditions on the optimum conditions themselves is as discussed

previously. That is, to the extent that reradiation is negligible, there is no effect on fw and heft. How-

ever, the effect on R* is to reduce it by a factor of 1.5 -2/3 (or 0.76) and the effect on th is to increase it

by a factor of 1.51/3 (or 1.14) at the worst by virtue of equations (15) and (1), respectively.

Comparison of radiative and convective heating- The ratio of the radiative to convective

heating rate was obtained from solutions of the flow-field equations in which R* and fw corresponded

to minimum heating conditions for Teflon. The result is that radiation exceeds convection by a factor of

from 2 to 9 as shown in figure 8-15. The importance of convection increases as the level of shock-layer

pressure is increased. For phenolic nylon, the results are almost the same without reradiation. That is,

qrg{.qc is greater than unity. However, because of reradiation, the ratio qr/qc is less than unity except at
high pressures (Ps = 10 atm). In any event, the gaseous radiant flux incident on the wall is considerably

larger than the convective flux for either Teflon or phenolic nylon at optimum conditions.
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Figure 8-15.- Comparison of radiative and convective heating at optimum conditions (Teflon, 0Cw= 1).

Effect of mass addition on surface shear stress- In figure 8-16, the surface shear stress divided

by distance from the stagnation point is shown as a function of flight speed for various pressure levels

for Teflon at optimum conditions. It was obtained from the flow-field solutions by use of the

relationship

- 9w _/(J + 1) Psl.ts fw (28)
X

which can be derived by use of the transforms in Chapter 7. Generally, wall shear stress increases with

velocity and shock-layer pressure level. For reasonable values of x, the shear stress is not excessive

(even at Ps = 10 atm, the surface shear stress per foot is of the order of standard atmospheric pressure

per foot for optimum conditions, and the optimum size is considerably less than a foot). The shear stress

for phenolic nylon would be slightly larger than that for Teflon because the mass addition rate for the

former is lower at a given flight condition.

104

103

102

10

p/, atm

10-1 J
3 4 5 6

_o

Figure 8-16.- Stagnation region shear stress at optimum conditions (Teflon, OCw= 1.0):

Of course, without mass addition, the shear stress would be considerably higher. The ratio of

wall shear stress with mass addition to that without mass addition is shown in figure 8-17 for Teflon

under optimum conditions. It is noted that the ratio is only 0.035 at U = 50,000 ft/sec and Ps = 1 atm.
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Figure 8-17.- Ratio of stagnation region shear stress with ablation to that without ablation at optimum
conditions (Teflon, Otw = 1).

Comments on validity- Our optimum-condition considerations have led to results of small nose

radii for which the assumption of a flow field in chemical equilibrium may be doubtful. In spite of the
fact that the chemistry and some of the thermodynamic and transport properties may be grossly in error

for nonequilibrium flow fields, the basic structure of the flow field (velocity and enthalpy profiles) is not

expected to be seriously in error. The reason is twofold: First, the analysis in the appendix of refer-

ence 26 shows that in the absence of transport phenomena, the enthalpy profile is almost unaffected by

large departures from chemical equilibrium. Second, the velocity and enthalpy profile results of refer-

ence 27, which include both chemical nonequilibrium and transport phenomena, do not differ in a sig-

nificant way from those of reference 2 or this chapter for chemical equilibrium (excluding low Reynolds
number results).

Moreover, the con,,ective heating is not likely to be very, much in error because the wall is

expected to be catalytic, and thus nonequilibrium convective heating would be essentially the same as
that for equilibrium since recombination would occur at or near the wall in either case.

We have noted that at the minimum heating condition, radiative heating dominates. Our radiative

heating estimates could be in error for several reasons. Although the neglect of nonequilibrium radiation

is a potential source of error for the small optimum nose radii, the present estimate is that it is not an

important effect as gaged by the results of reference 28. We have already noted that there is some

change in radiative heating caused by flow-field distortion and the presence of foreign species which

radiate differently from air. Moreover, there is still considerable uncertainty in the radiative properties of

air itself (the radiative properties of air given by ref. 29 may be high by a factor of 2 according to

ref. 30) and in the absorptivities and emissivities of the surface material.

The effect of underestimating the radiative properties on optimum conditions has been noted in

the section on effect of mass addition on radiative heating. Briefly, we now examine the effect of over-

estimating radiative properties by a factor of 2. As before, fw, heft, and _ are u.nchanged (for a material
which does not reradiate importantly). But R* is enhanced by about 60%, so m and qc are diminished

by a factor 1.6-1/2 (or 0.79) by virtue of equations (1) and (11). So both qr and qc change, but in such a

way that fw is constant. The error in.radiative properties by a factor of 2 has a large effect on R*

(60%); only a 20% effect on qc and m; and no effect on fw, heff, and _.

Thus, in spite of the many uncertainties in the flow-field chemistry and in our knowledge of gas

properties, the results of the minimized heating-rate study remain meaningful.
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MASS ADDITION AND SCALING

To a large extent, experimental studies of high-speed planetary entry problems consist of expos-

ing models to a simulated entry environment in a test facility, such as an arc-heated wind tunnel, a shock
tube, or a ballistic range. Experimental results are then scaled to the actual flight conditions by one

means or another.

Strictly speaking, we cannot expect to scale flow-field profiles at all because thermodynamic and

transport properties used in the flow equations do not scale. However, in this portion of this chapter, we

will examine briefly how to scale dimensionless foreign-species profiles approximately for forced mass

addition (transpiration) and then specialize the result to natural mass addition (ablation).

Scaling With Arbitrary Mass Addition

It is well known that in order to scale stagnation-region flow fields in general, the Reynolds

number should be fixed. In order to scale foreign-species concentration profiles, the mass addition rate_

must also be fixed. Or, because of the Reynolds number factor in the expression relating fw and rn/p**U

(and in view of the small variation i__n[;1/2 noted earlier), we may simply say that in order to scale mass

addition effects, both fw andm/po_U must be fixed. We will illustrate this by use of flow-field
solutions.

The main points of the demonstration are briefly as follows. In figures 18-21, solutions corre-

sponding to the conditions shown in table IV are presented in which either, but not both, fw orrn/p**U is
the same between pairs of examples (assuming that these__quantities can be varied at will). These results

can be compared with those for which both fw and rn/po_U (or Re) are constant, shown in figures 8-22

through 8-25.

.8

P/Pw

0 .2 .4 .6 .8 1.0

y/8

Figure 8-18.-Flow-field profiles; U = 41,000 ft/sec, Ps = 1 atm, R = 0.01 ft, fw = -1.
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Figure 8-19.- Flow-field profiles; U = 41,000 ft/sec, Ps = 1 atm, R = 0.01 ft, fw = -0.1.
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Figure 8-20.- Flow-field profiles; U = 41,000 ft/sec, Ps = 1 atm, R = 1 ft, fw = -1.
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Figure 8-21.- Flow-field profiles; U = 41,000 ftlsec, Ps = 1 atm, R = 1 ft, fw = -0.1.

TABLE IV.- SCALING FOREIGN-SPECIES EXAMPLES

Figure

18

19

20
21

22

23
24

25

U-× 10 -4, ft/sec

4.1

4.1

4.1
4.1

3

4.1

4.1
5

ps, atm -fw rn/pooU

1
1

1

1
1

10
1

1

1.0 0.5
.1 .05

1.0 .05

•1 .005

.3 .05

.3 .05

.3 .05

.3 .05

R, ft

0.01
.01

1.0

1.0
.063

.011

.1

.074

Re

1.14xlO 2

1.14xlO 2

1.14xlO 4
1.14xlO 4

1.19xlO 3

1.05xlO 3
1.14xlO 3

1.26x103
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Figure 8-22.- Flow-field profiles; U = 30,000 ft/sec, Ps = 1 atm, R = 0.063 ft, fw = -0.3.
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Figure 8-23.- Flow-field profiles; U = 41,000 ft/sec, Ps = 10 atm, R = 0.011 ft, fw = -0.3.
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Figure 8-24.- Flow-field profiles; U = 41,000 ft/sec, Ps = 1 atm, R = 0.1 ft, fw = -0.3.

1.0

.6

,4 l_ u/us ....

_ (_/Prl/(_/Pr) w

P/Pw

.2 .4 .6 .8 1.0

y/_

Figure 8-25.- Flow-field profiles; U = 50,000 ft/sec, Ps = 1 atm, R = 0.074 ft, fw = -0.3.

The foreign-species profiles corresponding to these two groups of figures are summarized in fig-
ures 8-26(a) and (b), respectively. Obviously, the concentration profiles resulting from fixing only one

of the parameters do not scale, as can be seen in figure 8-26(a). The figure shows that fw essentially

controls the foreign-species concentration at the wall_while Reynolds number determines its penetration

into the flow field. Thus, if both fw and Re (or m/pooU) are fixed, scaling should be much imp.roved_as

is evidenced by the cf prof'des summarized in figure 8-26(b). Moreover, since fixing fw and m/pooU

essentiallypreserves the Reynolds number (the slight variations in Re in table IV are caused by varia-
tions in E1/2 in eq. (27)), the velocity profiles of the second set (figs. 8-22 through 8-25) are scaled;
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Figure 8-26.- Foreign-species concentration profiles. (a) Either fw orria/p_ fixed.

(b) Both fw (= --0.3) and m/pooU (= 0.05) fixed.

where in the f'trst set (figs. 8-18 through 8-21) they are not. Finally, the enthalpy profiles of the first set

exhibit less similarity than those of the second set. The latter are summarized in figure 8-27.

There are additional features of some of the solutions mentioned above which_although sec-

ondary to the argument, are worth comment. In figure 8-18, for a flight condition of U = 41,000 ft/sec

and Ps = 1 atm, a nose radius of 0.01 ft, and a blowing rate fw = -1.0, both momentum (associated with

U/Us profile) and thermal (associated with H/H s profile) boundary layers are conspicuously absent.

Indeed, the vorticity (slope of U/Us curve) is approximately constant throughout the flow field. Interest-

ingly, the flow field is far from isoenergetic everywhere; not because of enthalpy depletion by radiation
but, rather, by convection. The mass addition rate at the surface is half the free-stream mass flux

(table IV), and standoff distance is 90% higher than the no-blowing value (this is the most extreme

result we have in both regards). The foreign species completely permeates the flow field, which is

important from the point of view of the relative importance of air and ablation species radiation. In this
regard, results show that the incident gaseous radiant-heating flux at the wall is enhanced by 49% over

the no-blowing value if air is the injected gas (because of the thickened shock layer), but is enhanced by
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Figure 8-27.- Comparison of enthalpy profiles for both fw (= -0.3) and rn/p_U (= 0.05) fixed.

93% over the no-blowing value if a species that is three times as strong an absorber and emitter as air

((x = 3) is injected at the same rate. If the mass addition rate is diminished by a factor 1/10, the principal

effect is to greatly diminish the foreign-species concentration (fig. 19). However, the foreign species still

permeates the entire flow field because Re is moderately low (-102).

Now if we increase body size (going from figs. 8-19 and 8-20), the result is that we regain the

structure of both a momentum and a thermal boundary layer (i.e., there are large changes in U/Us and
H/Hs near the wall). The foreign species vanishes at only a third of the distance from the wall to the

shock in spite of the fact that its concentration at the wall is an order of magnitude larger than that of fig-

ure 8-19 and the mass addition rate is the same. These are all the effects of going to a larger Reynolds
number (-104 in table IV), and they underscore the importance of preserving (at least approximately)
the Reynolds number in scaling mass addition effects.

Now we specialize the scaling discussion to the ablation case.

Scaling With Ablation

Although it is generally not possible (and sometimes not desirable) to simulate or scale all of the

pertinent parameters in the laboratory, it is nevertheless worth examining the extent to which mass addi-

tion can be scaled in the presence of conduction, gas and surface radiation, and ablation.

Conduction, radiation, and reradiation- The expression for the material fw as obtained from
equations (15) and (13) can be written
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'fW _ Re[OwB, 0s,R
+ 2.015×10_5(2e)1/4_--0.19_2 d e

psR

e -b(-fw)n CrewT4wl

We confine our attention to one material and assume that ha, Ctw, ew, and Tw are constant and, more-

over, that e and U 0.19 are almost constant. Then, in order to scale the flow-field concentration, we

require (from the preceding section), that both fw and m/po.U be fixed; or, alternatively, we require that
both fw and Re be fixed. From equation (29) these can be fixed if the brackets in equation (29) are

fixed. Conceivably, one could find a range of flight conditions and nose radii for which the bracket and

fw within the bracket are fixed. The constancy of the bracket would then constitute a somewhat unap-

pealing scaling law. It could be specialized to a set of simple laws, namely that

RB(U,ps) _2 e -b(-fw)n and 1

psU ,¢_sR psU

are individually constant, where these pertain to radiative, convective, and surface reradiative transport,

respectively. If convective heating is negligible, we can scale by keeping psU and R fixed between

model and prototype.

Note that, in general, we cannot have constant-velocity scaling with this set of simple laws; that

is, Ps and (because b = b(U)) R must be individually constant so that there is no hope of scaling either
flow field or model to achieve foreign-species scaling. Even if we neglect either radiative or convective

heating, we cannot have constant-velocity scaling because of the surface reradiative term.

Radiation only- If this is the only en_ergy transfer mode, scaling can be accomplished if fw and

Re are constant, which requires that BR/psU be constant. Or the last can be replaced by constant

BR2/I.ts because the Reynolds number is fixed. For scaling at constant velocity, BR/ps must be

constant.

Convection only- This situation is especially applicable to ground-based tests with noncharring

ablation models in arc-heated wind tunnels and ballistic ranges. If this heating mode is assumed to pre-

vail also for the prototype at actual flight conditions (as was the case for the mass addition calculation of

ref. 31), the scaling law requires that either (U2/pat-_sR_-b(-fw)n or(U5/2/d_s_-b(-fw)n be constant (as

well as constant Re and thus constant fw). For constant-velocity scaling, the requirement is simply that

be constant (along__with Re). Since ,,/}.ts is a weak function of altitude for constant velocity, the

conclusion is that m/p.,,U is constant and the foreign-species profiles are scaled simply if Re is pre-

served. T. N. Canning and G. Chapman of Ames Research Center have advanced the former conclusion

(r_x/pooU constant for constant Re) based on phenomenological arguments under the same constraints
(simulated shape, Reynolds number, velocity, and noncharring material (no reradiation)), and for

convection only.

In short, then, ablation scaling (by simple rules) in terms of ratio of mass flux at the wall to that

in the free-stream and foreign-species concentration profile can best be achieved for very special heating

conditions. Constant-velocity scaling cannot be achieved for materials which reradiate importantly.
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Low Reynolds Number Effects Without Mass Addition

It is common to study mass addition effects on convective heat transfer by use of the effective

heat of ablation and a heating rate corresponding to no mass addition. For large Reynolds number (no

shock-layer vorticity) and high speeds (up to 50,000 ft/sec), the convective heating rate without mass

addition is quite well known by both experiment (refs. 6 and 32-35) and theory (refs. 2, 6, 36, and 37).

Moreover, a number of investigators have studied the regime of Mach numbers up to 8, where Reynolds
numbers are low enough that shock-layer vorticity affects the convective heating rate for no mass addi-

tion (refs. 38-44). Van Dyke (refs. 45 and 46) has studied the vorticity effect up to infinite Mach number

without real gas effects. Hoshizaki (ref. 47) has examined the vorticity effect for the incompressible

shock layer. Our intent is to examine briefly the external vorticity (or low Reynolds number) effect on

wall shear stress and convective heat transfer at high speed using real gas properties. 6

Surface shear stress- The present flow-field analysis is a single-layer analysis in which the

equations are solved from the body to the shock. A very simple comparison of the single-layer result
with the no-vorticity, Lwo-layer (boundary layer plus inviscid shock layer) result for surface shear stress
can be made as follows.

The single-layer shear stress has been expressed by equation (28). It is simple to show for the
two-layer, no-vorticity analysis for a cold wall (ref. 2, for example) that

W

o vort 2 "_-
(30)

_v

where F w is the value at the wall corresponding to the solution of the Blasius equation for no mass

addition, and is given by reference 48. The ratio of Xw/Xwno vort obtained by combining equations (28)
and (30) is

Xw 2 rw

(Xw)no vort (21_) 3/4 F"
w

(31)

The result is shown in figure 8-28 in which the ratio is plotted as a function of Reynolds number of the

form used by reference 39. As would be expected, shear stress increases over its no-vorticity value as

Reynolds number decreases. At a given Reynolds number, the effect is enhanced by increasing speed
and decreasing pressure.

Convective heat-transfer rate-- The convective heat-transfer results for the same examples are

shown in figure 8-29. For present purposes, qcno vort was obtained by use of equation (11), which is the
result of Hoshizaki (ref. 6). It can be noted that the convective heating result parallels the shear-stress
result as would be expected.

6Because of a conflict which arises in the outer boundary conditions for very small Reynolds numbers, the results of this

section and those of figures 8-18 and 8-19 are considered to be first approximafons. The conflict is discussed and evaluated
in an approximate way in the appendix.
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Figure 8-28.- Effect of Reynolds number on surface shear stress with no mass addition.
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Figure 8-29.- Effect of Reynolds number on convective heat transfer with no mass addition.

The theoretical and experimental results of others (as obtained from refs. 39, 44, and 47) are

shown for comparison. In each separate study the ratio of convective heating with vorticity to that
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withoutis enhancedby anincreasein speedor Machnumber(M) or (for thecaseof ref. 47) e at a given
Reynolds number. Among the various studies, the ratio does not always increase with Mach number and

there is some disagreement as to the reason (discussed in refs. 38, 44, and 46). The present results lie

considerably higher than those of references 39, 41, 43, 45, and 46 as would be expected because of our

comparatively high speed (or Mach number) and/or low e.

Our results are close to the viscous layer results of Probstein (ref. 40) and Hoshizaki (ref. 47).

The results of these three studies are all derived from flow-field analyses which employed the Navier-

Stokes equations from the body to the shock wave. Both Probstein and Hoshizaki assumed constant den-

sity and Prandd number. Our results lie above theirs for a given Reynolds number and e, possibly

because of our variable Prandtl number corresponding to higher speeds for which ionization occurs, and

possibly because of compressibility effects near the cold wall. The slopes of our lines are alike and are
much like those of Hoshizaki at lower Reynolds numbers. The vorticity results show that convective

heating may be as much__as 60% higher than the no-vorticity value and that the ratio of the two is

enhanced by increased U or diminished Ps (or e) at constant Reynolds number.

The ratio of convective heat-transfer rate to total free-stream energy flux for these same

examples is shown as a function of Reynolds number in figure 8-30. The results of references 38 and 39

at Mach 5.7 and 8 are also shown. In each case the slanted line corresponds to the no-vorticity result. At

a given Reynolds number, CH, the ratio of convective heat transfer rate to the free-stream energy flux

without vorticity increases with increasing speed. The symbols represent the present result and are

attached to the appropriate no-vorticity line by a vertical line. Conservation of energy requires that CH
not be more than unity. Thus CH of unity represents the flow energy limit. For the examples repre-

sented by the symbols, the convective heating was less than half the flow-energy limit at the most.
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Figure 8-30.- Effect of Reynolds number on heat-transfer coefficient for no mass addition.

Finally, flow-field solutions for some of the nonablating small-body points of figures 8-28

through 8-30 are shown in figures 8-31 through 8-33. The trend toward increased vorticity near the wall
relative to that near the shock, and toward a more nearly isoenergetic flow field behind the shock for

higher pressure can be seen from comparison of figures 8-31 and 8-32.
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Figure 8-32.- Nonisoen__ergetic flow field with shock-layer vorticity for no mass addition

(U -- 41,000 ft/sec, Ps = 10 atm, R = 0.01 ft).
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Figure 8-33.- Nonisoen_.ergetic flow field with shock-layer vorticity for no mass addition

(U = 50,000 ft/sec, Ps = 1 atm, R = 0.02 ft).

CONCLUDING REMARKS

The flow equations in the stagnation region of the shock layer of blunt bodies (including mass,

momentum, and energy transport phenomena) have been solved for numerous examples at flight speeds

up to 50,000 ft/sec in air. The thermodynamic and transport properties of dissociating ionizing air were
used in the analysis.

Many results with mass addition (by transpiration or ablation) were obtained. It was shown that

convective heating was more strongly affected by mass addition than was radiative heating for mass
addition rates up to half the free-stream mass flux (excluding effects of radiation from ablation prod-

ucts). Convective heating results were correlated by a simple relation which shows that mass addition

diminishes convective heating exponentially, where the argument of the exponential is a simple function
of flight speed and Blasius-type wall stream function to the 3/2 power, (-fw) 3/2. Results with mass

addition for body nose radii between 0.01 and 5.0 ft, flight speeds from 30,000 and 50,000 ft/sec, wall

temperatures from 1500 to 3000 K, shock-layer pressure levels from 0.1 to 10.0 atm, and surface mass

addition rates up to half the free-stream mass flux were correlated by the simple expression.

Previous correlation formulas obtained from subsatellite speed results do not correlate the

present higher speed convective heating results corresponding to high mass addition rates.

The results with mass addition were used to study ablation at hypervelocity for which convec-

tion, gaseous radiation, and surface reradiation were taken into account. At specified flight conditions

(ranging in speed between 30,000 and 50,000 ft/sec and between 0.1- and 10.0-atm shock-layer pressure
level) for a given ablator, the nose radius which minimizes total heating rate was determined. For this

"optimum" nose radius, the following results were obtained.
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1.Theablationratein termsof thestreamfunctionat thewall dependsonly on theconvective
heatingpropertiesof thegasandis independentof thegaseousradiationpropertiesif reradiationfrom
thesurfaceitself is negligible.

2. Theablationratein termsof massflux at thesurfaceisnot morethanone-fourththefree-
streammassflux for theflight regimecitedaboveandis notmorethanone-halfthefree-streammass
flux ata speedof 70,000ft/sec.

3. Theinfluenceof massadditiononstandoffdistanceis moderate,thedistancebeingenhanced
by notmorethan50%overits no-ablationvalue.

4. Thegaseousradiationflux incidenton thesurfaceis largerthantheconductionflux by a
factorof 2 to 9.

5. If theablatedvaporsradiatelike air,massadditionenhancestheincidentradiantflux at the

surface by less than 20% over the no-ablation value.

6. If the ablated vapors radiate 10 times as strongly as air, mass addition enhances the incident

radiant flux at the surface by less than 50% over the airlike value.

7. The surface viscous shear stress is low, generally not more than 5% of the surface pressure.

In order to scale mass addition effects in terms of dimensionless concentration profiles of the for-
eign species, it is necessary to match both Reynolds number and either the stream function at the wall or
the ratio of the mass flux at the wall to that of the free stream.

Ablation rate and foreign-species concentration profiles can be scaled conveniently for very spe-

cial heating conditions only. Constant-velocity scaling cannot be achieved for materials which reradiate

importantly.

Finally, at low Reynolds numbers, the shock-layer vorticity enhances both shear stress and con-

vective heating over the no-vorticity values, the effect being greater at higher speed and lower pressure.
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APPENDIX

BOUNDARY CONDITIONS BEHIND BOW SHOCK WAVE FOR VERY SMALL NOSE
RADII OR REYNOLDS NUMBER

The outer boundary condition employed for the energy equation is

Hs = U-2/2 (A1)

However, for nose radii small enough that a conductive heat flux exists just behind the shock, the
boundary condition may be quite different from equation (A1) as follows. 7

For simplicity, we consider only the normal portion of the shock wave and equate energy flux on
each side of the shock. Thus,

/Cp dy ].o _Cp dy Is
(A2)

where y and v are positive outward from the body. We employ the strong shock approximation

_2
ho. <_-- (A3)

2

and assume

From mass continuity,

m

-Vs = eU (A5)

By use of equations (A2)-(A5)

1Hs- 2 po.U s

So we see that Hs is always less than U2/2 by an amount that cannot be determined until the solution

of the flow field behind the shock has been obtained and (dh/dy)s is known. The problem at once

7A similar difficulty exists with the outer boundary conditions on the momentum equation because of vorticity behind the
shock, as noted in reference 47. One way out of these difficulties is to integrate through the shock wave and use the free
slream as boundary conditions, as presented in reference 49. Even at that, many uncertainties in the shock wave (e.g.,
thermal and chemical relaxation phenomena) remain at these high velocities.

180



becomesone of iterating not only on the simultaneous differential equations, but on their boundary
conditions as well.

We can estimate how much Hs differs from U2/2 by assuming

dh hs - hw hs
n

dy 8 8
(A7)

Then Hs becomes

Hs = _-2 (1 + e2y) (A8)
2 (l+y)

where

1 {c )P sY p_(8/R)R s Re(8-/R)
(A9)

Since 8/R is not a strong function of R,U, or Ps in the examples considered, y is inversely propor-

tional to the Reynolds number and directly proportional to the Prandtl number behind the shock wave. If
y <_1, we have the usual boundary condition Hs =U/2. However, as Re gets smaller, that is,

i_f then

y= 1 Hs=-_ -

r ,, 1 Hs=U2/1 ).-_- _- + e 2 (A10)

_2 e 2
eEy _} 1 Hs-"

In the limit the approximation tells us that Hs is much less than U2/2.

For the moment, we adopt the point of view that Hs was specified, and that the result of the cor-

responding solution might apply directly to a higher flight speed. That is, the true flight speed is larger

than the assumed flight speed by the factor _/(1 + y)/(1 + e2y). For the results in question, shown in

figure 8-29, the factor varies from 1.0 to 1.2.

However, we cannot make direct application to the higher speed because we then__violate another

boundary condition in which the smaller value of U was employed; namely, psVs = -pooU. For these

reasons, the present low Reynolds number results are considered to be first approximations.

181



REFERENCES

1. Howe, J. T.; and Sheaffer, Y. S.: Mass Addition in the Stagnation Region for Velocity up to

50,000 Feet per Second. NASA TR R-207, 1964.

2. Howe, J. T.; and Viegas, J. R.: Solutions of the Ionized Radiating Shock Layer Including Reab-

sorption and Foreign Species Effects and Stagnation Region Heat Transfer. NASA TR R-159,
1963.

3. Lees, L.: Convective heat Transfer With Mass Addition and Chemical Reactions. Presented at

AGARD Combustion and Propulsion Colloquium, NATO, Palermo, Sicily, 1958 (GALCIT

Pub. 451).

4. Lees, L.: Ablation in Hypersonic Flows. Paper presented at the Seventh Anglo-American
Aeronautical Conference, New York, Oct. 5-7, 1959 (GALCIT Pub. 481).

5. Hayes, Wallace D.: Some Aspects of Hypersonic Flow. Ramo-Wooldridge Corp., Jan. 4, 1955.

6. Hoshizaki, H.: Heat Transfer in Planetary Atmospheres at Supersatellite Speeds. ARS

paper 2173-61, ARS J., vol. 32, Oct. 1962, pp. 1544-5I.

7. Cohen, N. B.: Boundary-Layer Similar Solutions and Correlation Equations for Laminar Heat-

Transfer Distribution in Equilibrium Air at Velocities up to 41,000 ft/sec. NASA TR R-188,
1961.

8. Yoshikawa, K. K.; and Chapman, D. R.: Radiative Heat Transfer and Absorption Behind a Hyper-
sonic Normal Shock Wave. NASA TN D-1424, 1962.

9. Adams, Mac C.: Recent Advances in Ablation. ARS J., vol. 29, no. 9, Sept. 1959, pp. 625-632.

10. Georgiev, S.; Hidalgo, H.; and Adams, M. C.: On Ablation for the Recovery of Satellites. Res.

Rep. 47, AVCO Res. Lab., March 1959.

11. Gross, J. J.; Masson, D. J.; and Gazley, C., Jr.: General Characteristics of Binary Boundary Layers

With Application to Sublimation Cooling. Rand Rep. P-1371, 1958.

12. Stewart, J. D.: Transpiration Cooling: An Engineering Approach. General Electric Rep. MSVD-

TIS-R 59SD338, May 1, 1959.

13. Swann, Robert T.: Effect of Thermal Radiation From a Hot Gas Layer on Heat of Ablation. J. Aero.

Sci., vol. 28, no. 7, July 1961, pp. 582-583.

14. Swann, R. T.; and Pittman, C. M.: Numerical Analysis of the Transient Response of Advanced

Thermal Protection Systems for Atmosphere Entry. NASA TN D- 1370, 1962.

15. Beckwith, I.E.: Similar Solutions for the Compressible Boundary Layer on a Yawed Cylinder With

Transpiration Cooling. NACA TN 4345, 1958.

182



16.Lundell,J.H.; Winovich,W.; andWakefield,R. M.: Simulationof ConvectiveandRadiativeEntry
Heating.Arthur M. Krill, ed.,Advancesin HypervelocityTechniquesProc.SecondSymposium
onHypervelocityTechniques.PlenumPress,NewYork, 1962,pp.729-748.

17.Scala,S.M.: TheAblationof Graphitein DissociatedAir, PartI, Theory.IAS paper62-154,1962
(alsoGeneralElectricCo.MissileandSpaceDivision,R 62SD72,Sept.1962).

18.Hartnett,J.P.;andEckert,E.R. G.: MassTransferCoolingWith Combustionin aLaminarBound-
aryLayer.HeatTransferandFluid MechanicsInstitute,Univ. of Calif., Berkeley,1958,Stanford
U. Press,Stanford,Calif., 1958,pp. 54-68.

19.Cohen,C. B.; Bromberg,R.; andLipkis, R. P.: BoundaryLayersWith ChemicalReactionsDueto
MassAddition. JetPropulsion,vol. 28,no. 10,Oct. 1958,pp.659-668.

20.Vojvodich,N. S.;andPope,R. B.: An Investigationof theEffectof GasCompositionon theAbla-
tionBehaviorof aCharringMaterial.Paperfor ARS andMIT ConferenceonPhysicsof Entry
Into PlanetaryAtmospheres(AIAA), Cambridge,Mass.,Aug. 1963.

21.Chung,P.M.: ShieldingStagnationSurfacesof FiniteCatalyticActivity by Air Injection in Hyper-
sonicFlight. NASA TN D-27, 1959.

22.Lees,Lester: Similarity Parametersfor SurfaceMeltingof a BluntNosedBody in aHigh Velocity
GasStream.ARS J.,vol. 29,no.5, May 1959,pp.345-354.

23.Bethe,HansA.; andAdams,MacC.: A Theoryfor theAblationof GlassyMaterials.JAS,vol. 26,
no.6,June1959,pp.321-328andp.350.

24.Allen, H. J.;Seiff,A.; andWinovich,W.: AerodynamicHeatingof ConicalEntry Vehiclesat
Speedsin Excessof EarthParabolicSpeed.NASA TR R-185,1963.

25.Allen, H. J.;andJames,N.: Prospectsfor ObtainingAerodynamicHeatingResultsFromAnalysis
of MeteorFlight Data.NASA TN D-2069,1964.

26.Howe,JohnT.; Viegas,JohnF.; andSheaffer,YvonneS.: Studyof theNonequilibriumFlow Field
BehindNormalShockWavesin CarbonDioxide.NASA TN D-1885,1963.

27.Chung,P.M.: HypersonicViscousShockLayerof NonequilibriumDissociatingGas.NASA
TR R-109,1961.

28.Page,W. A.; andArnold, J.O.: ShockLayerRadiationof BluntBodiesat ReentryVelocities.
NASA TR R-193,1964.

29.Kivel, B.; andBailey,K.: Tablesof RadiationFromHigh TemperatureAir. Res.Rep.21,AVCO
Res.Lab.,Dec. 1957.

30.Wick, BradfordH.: RadiativeHeatingof VehiclesEnteringtheEarth'sAtmosphere.Paperpre-
sentedto theFluid MechanicsPanelof AGARD, Brussels,1962.

183



31.Craig,RogerA.; andDavy,William C.: ThermalRadiationFromAblationProductsInjectedIntoa
HypersonicShockLayer.NASA TN D-1978,1963.

32.Rose,P.H.; andStark,W. I.: StagnationPointHeat-TransferMeasurementsin DissociatedAir.
J.Aero.Sci.,vol. 25,no.2, Feb.1958,pp.86-97.

33.Stankevics,J. O.; and Rose, P. H.: Stagnation Point Heat Transfer in Partially Ionized Air. IAS

Paper 63-61, 1963.

34. Compton, Dale L.; and Chapman, Gary T.: Two New Free-Flight Methods for Obtaining Convec-

tive Heat-Transfer Data. Paper presented at AIAA Testing Conference, March 1964.

35. Offenharty, E.; Weisblatt, H.; and Flagg, R. F.: Stagnation Point Heat Transfer Measurements at

Supersatellite Speeds. J. Roy. Aero. Soc., vol. 66, no. 613, Jan. 1962, p. 53.

36. Fay, James A.: Hypersonic Heat Transfer in the Air Laminar Boundary Layer. Paper presented at

Hypersonic specialists Conference, AGARD, Brussels, Belgium, Apr. 3-6, 1962.

37. Pallone, A.; and Van Tassell, W.: Stagnation Point Heat Transfer for Air in the Ionization Regime.

ARS J., vol. 32, no. 3, March 1962, pp. 436-437.

38. Ferri, Antonio; Zakkay, Victor; and Ting, Lu: Blunt-Body Heat Transfer at Hypersonic Speed and

Low Reynolds Numbers. J. Aero. Sci., vol. 28, no. 12, Dec. 1961, pp. 962-971 and p. 991.

39. Ferri, Antonio; and Zakkay, Victor: Measurements of Stagnation Point Heat Transfer at Low

Reynolds Numbers. J. Aero. Sci., vol. 29, no. 2, July 1962, pp. 847-850.

40. Probstein, R.F.: Shock Wave and Flow Field Development in Hypersonic Reentry. Paper presented

at the ARS Semiannual Meeting, Los Angeles, May 9-12, 1960, ARS Preprint 1110-60.

41. Cheng, H. K.: Hypersonic Shock-Layer Theory of the Stagnation Region at Low Reynolds Num-
bers. Proc. 1961 Heat Trans. and Fluid Mech. Inst. Stanford U. Press, Stanford, Calif., 1961,

pp. 161-175.

42. Hayes, Wallace D.; and Probstein, Ronald F.: Hypersonic Flow Theory. Academic Press, Inc.,
New York, 1959, p. 372.

43. Hickman, R. S.; and Giedt, W. H.: Heat Transfer to a Hemisphere-Cylinder at Low Reynolds

Numbers. AIAA J., vol. 1, no. 3, March 1963, pp. 665-672.

44. Tong, Henry; and Giedt, W. H.: Supersonic Stagnation Point Heat Transfer at Low Reynolds Num-
bers. AIAA J., vol. 2, 1964, pp. 185-186.

45. Van Dyke, Milton: Second-Order Compressible Boundary Layer Theory With Application' to Blunt

Bodies in Hypersonic Flow. Hypersonic Flow Res., Academic Press, Inc., New York, 1962,

pp. 37-76.

46. Van Dyke, Milton: A Review and Extension of Second-Order Hypersonic Boundary-Layer Theory.

Rarefied Gas Dynamics, vol. 2, Academic Press, Inc., New York, 1963, pp. 212-227.

184



47.Hoshizaki,H.: ShockGeneratedVorticity Effectsat Low ReynoldsNumbers.Tech.Rep.LM
SD-48381,Missile andSpaceDivision, 1959.

48.Emmons,H. W.; andLeigh,D.: Tabulationof theBlasiusFunctionwith Blowing andSuction.
CombustionAerodynamicsLab.,InterimTech.Rep.9, HarvardUniv., Nov. 1953.

49.Probstein,R. F.; andKemp,N. H.: ViscousAerodynamicCharacteristicsin HypersonicRarefied
GasFlow. J.Aero/SpaceSci.,vol. 27,March 1960,pp. 174-192.

50.Kratsch,K. M.; Hearne,L. F.; andMcChesney,H. R.: ThermalPerformanceof HeatShieldCom-
positesDuring PlanetaryEntry.Presentedat AIAA-NASA NationalMeeting,PaloAlto, Calif.,
1963.

185





CHAPTER 9

VERY SEVERE FLIGHT ENVIRONMENTS, THE JUPITER PROBE

Thus far we have learned something about hypervelocity flight in Earth's atmosphere. We have

considered stagnation-region heating in considerable detail. The flow has been in chemical and thermo-

dynamic equilibrium in the illustrations presented. We can now say that the apparent sterile formalism

of kinetic theory and radiative transfer have been applied with some fidelity to real gas flow.

Flight in other planetary atmospheres has been studied: Mars, including return to Earth (ref. 1);
Venus, Uranus, and Saturn (and its largest moon, Titan (ref. 2)); and the most severe entry environment

that we have studied in detail--Jupiter (ref. 3). The last of these is the subject of this chapter.

Both convective and radiative heating rates for various hypervelocity flights (circles) and some

facilities that were used to simulate those flight environments (squares) are shown in figure 9-1 of the

AIAA Survey Paper presented in this chapter. Thus we see Apollo, Pioneer Venus, Space Shuttle, and

the Jupiter Probe. The Jupiter entry is two orders of magnitude more severe in terms of heating than the

Apollo flight. Correspondingly, the Giant Planet Probe Facility (GPPF) at NASA Ames Research Center

is shown, which partially simulated the Jupiter Probe entry for a small body.

The Jupiter Probe is part of what is called the Galileo Mission. Although the probe has been

designed and built, its launch has been delayed for lack of a launch vehicle. Nevertheless, it is instruc-

tive to examine the phenomenological events involved in the design of the probe destined to enter an
environment that is an inferno.

It may be remarked at the outset that the heat-shield material for the probe was selected to be

carbon phenolic. Although that choice was partially attributed to the writer, I preferred a heat shield that

back-scattered radiation in the depths of the material (even though the surface was ablating) in this

intense radiative environment. Indeed, that technology was well advanced, but it was not given serious
consideration.

A descriptive survey of the effort constitutes the balance of this chapter, which was originally

presented as AIAA Survey Paper 81-1068. References starting with reference 4 are those of that paper.

The work is that of many people at NASA Ames Research Center, Langley Research Center, The Jet

Propulsion Laboratory, the General Electric Co., the Acurex Corporation, and other organizations and

people. It was a major technology effort. There is no reason to highlight the features, uncertainties, and

difficulties of the supporting research and technology effort in advance, so we move directly into the

text of the paper.
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(Text of the)
SURVEY OF THE SUPPORTING RESEARCH AND TECHNOLOGY FOR THE THERMAL

PROTECTION OF THE GALILEO PROBE 1

Abstract

The Galileo Probe, which is scheduled to be launched in 19852 and to enter the hydrogen-helium

atmosphere of Jupiter up to 1475 days later, presents thermal protection problems that are far more diffi-

cult than those experienced in previous planetary entry missions. The high entry speed of the probe will

cause forebody heating rates orders of magnitude greater than those encountered in the Apollo and

Pioneer Venus missions, severe afterbody heating from base-flow radiation, and thermo-chemical abla-

tion rates for carbon phenolic that rival the free-stream mass flux. This paper presents a comprehensive

survey of the experimental work and computational research that provide technological support for the

probe's heat-shield design effort. The survey includes atmospheric modeling; both approximate and

first-principle computations of flow fields and heat-shield material response; base heating; turbulence
modeling; new computational techniques; experimental heating and materials studies; code validation

efforts; and a set of "consensus" first-principle flow-field solutions through the entry maneuver, with

predictions of the corresponding thermal-protection requirements.

Introduction

The Galileo Probe is scheduled to be launched sometime in 1985 and to enter Jupiter's atmo-

sphere as many as 1475 days later. After entry, a parachute will be deployed, both the forebody and

afterbody heat shields will be jettisoned, and scientific measurements will be made as the payload

descends through the atmosphere. Because this entry severely tests our thermal-protection design capa-
bility, a significant research base--both experimental and analytical--has been formed in support of the

probe heat-shield design effort. Since about July 1975 (ref. 4) the supporting research and technology
base has involved Ames Research Center, Langley Research Center, and several contractors.

The high-speed entry (up to 48.2 km/sec relative to the hydrogen-helium atmosphere of Jupiter)
is expected to lead to probe forebody heating rates that are hundreds of times greater than those of

Apollo and 10 times the Pioneer Venus rates (fig. 9-1). The corresponding thermo-chemical ablation

rate of the carbon phenolic heat shield is expected to rival the free-stream mass flux because of the

intense radiative and convective heating from the hot turbulent gas cap that will envelop the probe.

Moreover, for the cool dense model of the Jovian atmosphere, it is likely that radiative heating rates near

the stagnation point will be so severe that the heat-shield material will undergo spaUation as well as

thermo-chemical ablation. It is calculated that the severe environment will cause the probe forebody to
lose about one-third of its mass during the entry heating pulse. Not only is forebody heating a severe

problem for the Jovian probe, but the afterbody will incur significant radiative heating from the wake

region of the flow. As a result, it is necessary that the flow field and the heating rates about the entire

probe, including the wake, be understood as thoroughly as possible in order for the design of the thermal
protection systems to be as effective as practical.

1Written by J. T. Howe, W. C. Pitts, and J. H. Lundell, Ames Research Center, as AIAA Survey Paper 81-1068.
2The Galileo Probe was launched in October 1989.
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Figure 9-1.- Heating environments.

The flow environment and material response about the probe is beyond our previous capability

to simulate experimentally, or to compute realistically. In recent years, new experimental facilities have
been devised, constructed, and used to simulate some but not all of the features of the entry environ-

ment; indeed they cannot simulate the flow field in all respects. The Ames Giant Planet Probe Facility

(GPPF) can produce heating rates that simulate the heating levels on the flank of the probe, and the

Ames Gas Dynamic Laser Facility can simulate heating rates to the stagnation region of the probe and

produce heating levels that cause spallation of the heat-shield material. These facilities will be discussed

subsequently. Both the forebody and afterbody flow fields and radiative transfer have been studied in

shock-tube facilities, and by firing free-flight models into a noble gas mixture to simulate Mach number

and Reynolds number in order to observe forebody and wake flow-field structure. Moreover, various

computational codes have been developed to predict the effects of a great many coupled physical phe-
nomena in the flow field and in the heat-shield material.

A number of additional problems have been addressed to assess their effects on the probe heat

shield. These include the composition and thermal structure of the atmosphere, probe shape, and tar-
geting (initial entry) conditions. But some phenomena (such as spallation) that cannot readily be

assessed by computational physical analysis must be investigated experimentally. The final objective of

the comprehensive supporting research and technology effort is to provide an acceptable set of first-

principle computational codes to be used as a standard for the more approximate design codes of others.

To enhance confidence in the results of these first-principle, or benchmark, codes it is necessary to vali-

date the codes experimentally, where possible, and to provide experimental corrections to account for

phenomena that cannot be modeled in the codes.

Targeting, Atmospheric Modeling, and Trajectory Computations

Targeting for the entry probe has been at an altitude of 450 km at various latitudes near the

Jovian equator. Effects of variations in the azimuthal angle (near equatorial), of the entry angle of the
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probe,with respectto theplanet,andof probemassandconfigurationon thermal-protection require-

ments have been examined. That target altitude was fixed early in the study, because it corresponded to

what was thought to be the "top" of the model atmosphere, according to reference 5. Subsequently,
however, there were a number of other model atmospheres which differed both in thermal structure and

in relative abundance of hydrogen and helium. The thermal structures of these different nominal atmo-

spheres are shown in figure 9-2, which was adapted from an Acurex Corporation report. The original

atmospheric model, which corresponded to that reported in reference 5, was composed of 85% hydrogen

and 15% helium by volume. That was followed by the atmosphere shown by the solid line in figure 9-2;

it was referred to as the Hunten model. That model had the thermal structure given by reference 6, but a

composition of 89% hydrogen and 11% helium in accord with reference 7. This was followed by a

nominal atmosphere model developed by G. Orton of the Jet Propulsion Laboratory which has the ther-
mal structure shown in figure 9-2, and a composition of 89% hydrogen and 11% helium, as noted above.
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Figure 9-2.- Thermal structure for nominal model atmospheres of Jupiter.

The atmosphere was assumed to be in hydrostatic equilibrium. Hence, an ordinary differential

equation could be solved for each model atmosphere composition and thermal structure to compute

density-altitude profiles for each model. These computations were performed by M. J. Green, W. C.
Davy, and D. Kirk of Ames Research Center. (Mr. Kirk and his co-workers also contributed to the

Galileo SRT effort in the area of flight mechanics, which is not included in the scope of this paper.) A

comparison of two sets of these atmospheres is shown in figure 9-3, in which the corresponding atmo-
spheric composition is also shown. Thus for each atmosphere defined by a thermal structure there is a

warm, nominal, and cool version, depending on the composition. The Orton cool and nominal model

atmospheres are seen to be significantly higher than those of reference 5. (Subsequently, for the heavy

(310-kg) probe study, a revised version of the Orton atmosphere was used.) Nevertheless, targeting was
still specified at 450 km, and trajectories were calculated such that the probe would arrive at that altitude

with the specified entry angle. Trajectories were calculated to include the effects of latitude, azimuthal

angle, entry angle, and ballistic coefficient for each candidate probe shape, and to accommodate the fact
that Jupiter is a rotating oblate spheroid.
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Figure 9-3.- Atmospheric models of Jupiter.

Entry was usually at quite shallow entry angles (5 to 11 ° inertial entry angle or 6.25 to 13.72 °

relative to the rotating atmosphere (ref. 8)) with flight in the posigrade direction to take advantage of the

velocity of the rotating atmosphere (about 12 km/sec). In this way the velocity of the probe relative to

the atmosphere was significantly diminished (from about 60 krn/sec inertial to 48 krn/sec relative) in

order to reduce the heating rates and the weight of the thermal-protection system. Probe shapes were

studied that varied from 35°-half-angle hyperboloid forebodies (ref. 9) to 60°-half-angle sphere cones

(ref. 10) with a bluntness ratio of about 1/2. The baseline shape was a 45°-half-angle sphere cone with a

nose radius of 0.31 m and a base radius of 0.62 m. The shape was modified slightly late in the study.

The probe weight was increased during the course of the study as greater demands were placed upon the

probe. Much of the early work was for 242-kg probe; later work was for 290-kg and 310-kg probes, as
will be shown.

Flow About the Forebody and Heat-Shield Response

During the heating pulse the flow is determined over the forebody at a number of times through

the trajectory. To provide a reference set of benchmark solutions, the physical phenomena illustrated in

figure 9-4 (adapted from ref. 11) must be included in the analysis. Thus the flow equations include the

transport of mass, momentum, energy, and species. The gases are hot and reacting, and emit thermal

radiation which is incident on the heat shield. The radiative and convective heating cause the heat-shield

surface to ablate at a rate that is sometimes comparable to the free-stream mass flux. The ablated gases

mix with and react with the atmospheric gases, and enter into the radiative transfer in the shock layer.
The gas mixture makes a transition from laminar to turbulent flow as it is swept around the body. To

obtain the benchmark flow-field solutions, a quasi-steady-state ablation boundary condition is applied

such that the ablation rate is simply related to the net heating to the wall. Subsequently, the heat shield is

designed by applying the heating rates obtained from the flow field to a transient material-response
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Figure 9-4.- Heat-shield and flow phenomenology.

analysis of a material of finite thickness; the latter material is receding and losing mass by thermo-

chemical ablation of the surface char, and by the outgassing of the pyrolysis gases caused by the internal

conduction of heat. The thickness of the heat shield is determined by a specified allowable temperature
at its back surface.

A number of flow-field studies were performed early in the research effort, using either inviscid

codes or various codes that employ correlations and physical estimates to assess the existing state-of-

entry environment-prediction methods (ref. 10); and the extent and importance of atmospheric structures
on radiative heating (ref. 8), radiative heating distributions (ref. 12), problems concerned with an atmo-

spheric reconstruction experiment (ref. 13), and configuration effects on radiative heating (ref. 14).

Moreover, an extensive effort was made to acquire and ref'me the radiative properties of carbona-
ceous ablation gases both experimentally and theoretically (refs. 15-25). The detailed effect of these car-

bonaceous species is illustrated in figure 9-5, which was adapted from reference 26. Figure 9-5(a) shows

the spectral radiative flux incident on the stagnation region of the entry probe near peak heating, and fig-

ure 9-5(b) shows the spectral flux incident on the surface. The difference between the two spectra repre-

sents absorption by spectral bands of the ablation gases, as shown in the figure. The spectral-property
studies were used to provide input data primarily to the detailed benchmark flow-field codes, as
mentioned previously.

Three primary benchwork codes, which were developed over an extended period of time, solve a

coupled set of partial differential equations for the mass, momentum, energy, and elemental species

transport between the forebody and shock wave. This set of equations was complicated by a radiative
flux divergence term, which is a double integral over space and wavelength. The three codes--RASLE,

HYVIS, and COLTS--were developed primarily by W. E. Nicolet, J. N. Moss, and A. J. Kumar,

respectively. Briefly, RASLE (ref. 11) solves the equations simultaneously by a Newton-Raphson
numerical technique; HYVIS solves the equations sequentially by iteration; and COLTS is a time-

dependent version of HYVIS. The development of these codes cannot be described in detail here; in

general, however, the laminar stagnation region shock layer was first solved by RASLE (ref. 27) and

was used to provide ablation blocking corrections for more approximate codes used in a parametric
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study (ref. 28), in which comparisons with other parametric studies were made. These results were used
in reference 29 to assess heat-shield requirements and were compared with the pioneering work of

Tauber (ref. 30).

The HYVIS code was a pioneering code in several respects. The code produced laminar solu-

tions about hyperboloids of revolution. The solutions were over the entire carbon phenolic forebody heat
shield, and included coupled ablation as a quasi-steady-state boundary layer (ref. 31). Subsequenfly, the

code also produced turbulent-flow solutions about both sphere-cones and hyperboloids with coupled
ablation for carbon phenolic heat shields (ref. 32).

The RASLE code also computed turbulent flow over a sphere-cone heat shield at various points

in an entry trajectory (ref. 33), and the results were compared with those of reference 29. The turbulence
models for the two codes differed somewhat. HYVIS used a Prandtl mixing length near the wall and a

Clauser-Klebanoff outer eddy viscosity; RASLE used an ordinary differential equation for the mixing

length near the wall, selected partly on the basis of an experiment of reference 34 for a highly cooled
wall, and a wake-like mixing length differential equation away from the wall. Surface radiative condi-

tions for the two codes also differed, so that there were significant differences in the integrated mass loss

obtained from results of the two codes through the trajectory, as shown in figure 9-6. The inertial entry

angle was -9 ° in the nominal atmosphere. Results from the COLTS code (ref. 35) are also shown; in

general, they agree with the results of HYVIS. It may be noted that HYVIS was able to obtain solutions
at the beginning of the heat pulse and after peak heating, but not in between. RASLE solutions were
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obtained throughout the heating pulse. The COLTS code seems to have overcome some instabilities

experienced by HYVIS and to have obtained two additional solutions on the upward part of the heating

pulse.

A very detailed comparison of the results of these benchmark codes was performed at two times

in the trajectory (ref. 36): 110.2 sec and 111.3 sec. Differences in physics, methods, boundary condi-

tions, and "convergence" criteria were presented, and the effects were assessed. An attempt was made to
reconcile results of the codes by making adjustments to correct for some differences. The work reported

in reference 36 is a remarkable effort to sort out many coupled interrelated effects to determine those

which are most significant. Global mass and energy conservation checks were made. Among three

major contributors to differences in the results, the turbulence models are considered to be the most

important, because of their effect on radiative transfer to the wall. Although the various turbulence

models employed do not affect state profiles near the wall significantly, profiles remote from the wall

are affected. Thus, temperature profiles away from the wall differ because of the turbulence model.

Correspondingly, species profiles differ as well. Thus the species that emit and absorb radiation are dis-
tributed differently in differing thermal environments by the different turbulence models; the radiation

emitted differs correspondingly. Because radiation is the most important phenomenon causing heat-
shield ablation, the effect of turbulence modeling on radiative transfer is of primary importance. Results

of this important paper (ref. 36) have affected subsequent benchmark solutions and contributed to a

"consensus" set of benchmark solutions shown in part subsequently in this paper.

Turbulence modeling of a very hot, chemically reacting flow over a relative cool surface that is

ablating at a rate comparable to the free-stream mass flux is very poorly understood. A comparison of
several candidate turbulent models (including those cited above) has been made (ref. 37) in the context

of a given flow-field code to isolate the effect of the model alone, and to rank the various models

according to severity. It is clear that this is an important problem. Experiments must be devised that will

make it possible to construct realistic turbulence models and to provide input data for those models.

As noted previously, the flow-field results shown in figure 9-6 are obtained by use of a quasi-

steady-state ablation condition. The heat shield designed by the CMA code--using the net heating out-

put from the RASLE code as input to the in-depth materials-response code--is shown in figure 9-7. The

CMA code computes the transient thermal response of a charring ablating material of finite variable
thickness, and includes the effects of temperature-dependent properties and in-depth pyrolysis. The
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criteriathat"design"theheatshieldarethemaximumallowablebackfacetemperatureof 700K andthe
safetymargins(shownin fig. 9-7).Thesemarginsarepercentagesof theablatedmaterialthatareadded
for safetypurposes.Thefigureshowstheinitial andfinal shapesof thisprobedesignedfor entry into the
nominalatmosphere.Themassloss(47kg) is lessthanthatshownin figure9-6 (53kg). Thedifference
is affectedbytheheatstoragein thetransient,in-depthsolutionin only aminor way; thispoint will be
discussedsubsequently.Whentheheatshieldwith thesafetymarginsdefinedby figure 9-7 is allowedto
enterthecool denseatmosphereat aninertial entryangleof-11% anadditionalthermalprotectionmass
(22%)isrequiredfor survival,with nosafetymargin(ref. 38).Thesepreliminaryresultsarefor a
242-kgprobeandareillustrativeonly.Subsequently,weshallciteresearchthatreconcilessomeof the
differencesamongthebenchmarkcodesandpresentresultsfor amorerecentheavierprobe(310kg).
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Figure 9-7.- Transient heat-shield response: carbon phenolic.

The codes that produced the results of figures 9-6 and 9-7 are based on first principles and are

considered to be benchmark flow-field and material response codes. They might even be labeled "first-

generation" benchmark codes, because new computational techniques are being devised and applied to

this problem, as will be shown subsequently. However, even these first-generation benchmark codes are
very costly to operate and are difficult and time-consuming to run---especially for broad parametric

studies. Thus for engineering purposes, more flexible, more approximate codes are useful for economic

reasons. Zoby et al. (ref. 39) have developed an approximate code that simulates inviscid radiating flow-

field analysis by the use of analytic shock shapes and a 58-step radiative transfer model. Moreover, a

code has been developed to predict laminar and turbulent convective heating of reactive and nonreactive

gases about blunt reentry configurations for hypersonic flight (ref. 40). These approximate codes

produce results that are in good agreement with more complicated codes, and are used extensively for

parametric studies.
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Flow about the Afterbody and Base Heating

Although the convective heating of the base regions is small (ref. 41), radiative heating is not.

The significance of the base radiative heating was noted by Stephenson (ref. 42) in 1965 by measure-

ments made of radiation from the wake of an ablating blunt body launched into air;, the measurements

were made as the body flew past the radiation sensors.

Park (ref. 43) developed a base flow-field model and derived the base radiative heating from the

model. Observations from both ablating and nonablating free-flight tests were used to devise the flow-

field model shown in figure 9-8. The main features of the flow field were an expansion about the shoul-

der, a recirculation region behind the body; and a wake which recompressed and formed a neck about

1.5 body diameters aft of the frustum, with a neck diameter between one-half and two-thirds of the body
diameter. Method-of-characteristics solutions about the shoulder were matched to the recirculation

region by a choice of base pressure that gave the observed turning angle. Physical reasoning led to a
theoretical model of the recirculation, recompression, and neck-region flows. In the ablation case of

interest, chemical and radiative modeling predicted that the most severe radiation would occur immedi-

ately behind the frustum, because of radiation from hydrogen and carbon atoms that were not in chemi-

cal equilibrium in the expansion region. At the base stagnation point, radiation is received from both the

neck and recompression region, and the recirculation region--as shown in figure 9-9. These regions are

probably in chemical equilibrium, and detailed spectral radiation computations from the hydrogen-
carbon mixture produce the upper line corresponding to the ablation case. (It is interesting that the non-

ablating case gives almost comparable results--probably because the temperature is higher.) It is

believed that the high base pressure obtained by the model is the most significant physical property that

leads to the high base radiative heating. The effect of base pressure was examined and the radiative

heating was found to vary as the square of the ratio of base-to-forward-stagnation-point pressure.
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Figure 9-8.- Schematic of base-region flow field. (a) Shoulder region. (b) Velocity profiles. (c) Enthalpy

profiles.
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Experiments performed by instrumented nonablating models in shock tubes (ref. 44) showed that

radiative heat fluxes are indeed significant, and the results were generally in agreement with those of

reference 43. Comparison of the experimental and theoretical results was made with the early work
reported in reference 42; agreement was generally good. It was determined that the ratio of base-to-

front-stagnation radiative heat fluxes and pressure ratios for a Jovian probe are significant, and are in

agreement with the theory of reference 43.

A summary of the work of references 43 and 44 is presented in reference 45. The work described

in references 43-45 is for laminar flow. Work in progress in free-flight facilities addresses the turbulent-

base-flow problem.

Second-Generation Flow-Field Codes

Although benchmark flow-field codes were being used extensively to produce forebody
solutions with ever-increasing complexity and physical detail, it was apparent that the method was being

strained to the utmost, and accuracy and convergence problems were becoming more severe (ref. 36).

Moreover, afterbody solutions were becoming more important, and they were intimately related to

forebody events (ref. 43). Thus efforts were initiated to develop a new method, one in which new

coordinate systems and advanced numerical techniques would be used. A new code, CAGI (ref. 46), that

was tailored to capture the major flow-field features of both the forebody and the afterbody, was devel-

oped. The code solved the unsteady compressible Navier-Stokes equations for two-dimensional axisym-
metric three-dimensional flow. A finite-volume formulation was devised, rather than the usual finite-

difference approximations of the differential equations. The finite-volume formulation maintains global

conservation of mass, momentum, and energy over the computational volume in accord with specified

fluxes at the volume boundaries. A mesh is constructed over the entire probe configuration; the mesh is

flow-aligned over four principal regions---forebody shock-layer, base recirculation, outer inviscid wake,
and inner inviscid wake (ref. 47). There is a singular coordinate mesh topology in the recompression
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region. The computational code employed is an outgrowth of the basic factored implicit algorithm of
references 48-52.

The first results of the code were presented in reference 46, where real-gas properties were mod-

eled rigorously by a variable "gamma," which reduces to the ratio of specific heats for the case of a per-

fect gas. A "homogeneous sweep" algorithm was used in that study instead of the full-factored implicit

algorithm. Results were presented in reference 46 for the case of flight at Mach 50; some results for
mass addition along the forebody surface were included. Of particular interest is the flow-field structure

about the entire bluff body and the corresponding computational mesh shown in figure 9-10 (actually

adapted from ref. 47). The computed pressure distribution is shown in figure 9-11, and a comparison of

the computed velocity vector field with an experimental shadowgraph by C. Park is shown in

figure 9-12.

A chemically reactive gas module of the code was introduced (ref. 53) and solutions were

obtained. The pressure distribution, and the temperature, enthalpy, compressibility, and species profiles

were computed and compared with results of reference 9. There was generally good agreement between
the results of the two studies.
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Figure 9-10.-Probe flow-field features and the computational grid.
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Experimental Program

In addition to the analytical program, there is also an extensive experimental program on both

the forebody and afterbody heat-shield materials. The objectives of the program are (1) to provide

ground-based facilities that simulate the expected Jovian entry heating conditions as closely as possible
and (2) to evaluate candidate materials in those facilities. The magnitude of the simulation problem is

illustrated in figure 9-13, which shows the heating distribution over the forebody, at peak heating, for

one of the early study versions of the entry probe. Note that the nonablating peak heating rate is greater
than 40 kW/cm 2 at the stagnation point, but that it decreases to 8 kW/cm 2 at the rear end of the conical

frustum. The convective heating is much more uniform over the forebody, decreasing from about
12 kW/cm 2 at the stagnation point to 9 kW/cm 2 on the frustum.
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Figure 9-13.- Galileo peak-heating facilities.

The heating rate on the conical frustum, where 85% of the forebody heat-shield weight is

located, is well simulated by the GPPF; the GPPF is illustrated in figure 9-14 and is described in detail

in reference 54. In the arc heater, an equimolar mixture of hydrogen and helium is injected uniformly

along the 4.32-m-long constrictor and heated to about 15,000 K by an electric arc, which terminates on

external graphite electrodes. For the initial heat-shield test program, the facility was operated under the

following conditions: power = 57.7 MW, current = 5.33 kA, flow rate = 0.12 kg/sec, bulk enthalpy =

185 MJ/kg, and model stagnation pressure = 2.2 atm. The combined convective and radiative heating

rate measured by a 4-cm-diam. thin-shell tungsten calorimeter, with a radius of curvature of 20 cm, was
14.6 kW/cm 2. A radiometer of similar geometry was used to measure the radiative heating component,

and the measured value was 6.0 kW/cm 2. By combining these two numbers and correcting for the

reflectivity of the tungsten calorimeter cap, the applied convective heating rate was determined to be

12.0 kW/cm 2. These heating rates pertain to the model test position, which is 7 cm downstream of the

7-cm-diam. nozzle exit. The facility is equipped with four swing arms, so that a calorimeter, a pressure

probe, and two ablation models can be inserted into the free jet stream during a given run. The ablation

models are 4-cm-diam. flat-faced cylinders consisting of a concentrically wound carbon phenolic shroud

and a 2-cm-diam. core on which recession and weight measurements are made.
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Heat-shield materials studied to date include six versions of the carbon phenolic forebody

materials, carbon-carbon composites, graphites, hyperpure silica reflective materials, and the nylon phe-

nolic afterbody material. Only the work on one version of carbon phenolic and graphite will be dis-

cussed. In all the test programs, ATJS graphite is used as a control material against which the other

materials are compared. It also serves as a check on the arc-jet repeatability. Results of some of the

earliest tests on carbon phenolic and graphite are compared with theoretical calculations in the next sec-
tion. In later work, all materials were tested at four different exposure times so that the steady-state

ablation rates could be established. A comparison of the steady-state rates for chop-molded carbon

phenolic (the nose-cap material) with those of the control material is shown in figure 9-15. For ATJS

graphite, the steady-state mass-loss rate is 0.41 g/sec and the recession rate is 0.070 cm/sec. Corre-
sponding values for carbon phenolic are 0.528 g/sec and 0.104 cm/sec. Thus, the carbon phenolic mate-
rial has a mass-loss rate that is 28.8% higher than that of ATJS, and the recession rate is 48.6% higher

than that of ATJS. The greater disparity in the recession rate is accounted for, in part, by the fact that the

density of carbon phenolic is 1.45 g/cm 3 compared with 1.83 g/cm 3 for the graphite.

Of course, ablation performance is not the sole criterion for a heat-shield material. In addition to

accommodating entry heating by ablation, the heat shield must protect the bond line between the shield
and the structure from excessive temperatures. Thus, in addition to its ablative properties, the insulative

properties of a heat-shield material are important. In flight, the superior insulation properties of carbon

phenolic will tend to compensate for its somewhat poorer ablation performance.

Since the GPPF is not capable of producing radiative heating rates comparable to the peak values

expected in flight, a gasdynamic laser (GDL) must be used to evaluate materials under these severe

heating conditions. The facility, which is described in detail in reference 55, is a conventional
combustion-driven laser which produces radiation at 10.6 I.tm by burning CO to produce CO2 as the

lasing medium. Although the lasing wavelength is significantly different from the UV and visible radia-

tion expected in flight, the difference is not expected to be important, because the heat-shield materials

are graybody absorbers. When the internal mirrors are freshly polished and aligned, the laser will pro-

duce an output power of 33 kW when room-temperature nitrogen is injected along with the CO and up

to 45 kW when the nitrogen is heated to 1400 K by a gas-f'tred heat exchanger. Thus, when the output
beam is focused to a 1.0-cm 2 spot, the peak radiative heating rate expected in flight (fig. 9-14) can be

simulated.
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Early in the laser testing (ref. 56), it was discovered that carbon phenolic tends to spall
(fig. 9-16) when exposed to severe radiative heating. Although this phenomenon may be unique to laser

testing, it must be assumed, to be conservative, that it will also occur during peak heating of the Galileo

probe. In order to account for spallation in the heat-shield design, the phenomenon must be quantified;
such tests were performed.

Figure 9-16.-Carbon phenolic spallation.
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Theexperimentalsetupfor thesetestsis illustratedin figure9-17anddescribedin reference57.
Theoutputbeamof theGDL iscollimatedintoan8-cmdiameterandthentransformedinto aspatially
uniform 1.0-cmby 1.0-cmspotby meansof a segmentedminor. Thisdeviceconsistsof aneight-by-
eightarrayof 1-cmby 1-cmpolishedmolybdenumsegments.Although thesegmentsareoptically flat,
theyaremountedon acurved,water-cooledsubstratewhichgivesthedevicea 1.0-mfocal length.The
mirror divides the incident beam into many 1-cm by 1-cm beams and superimposes them at the focal

point. The focal image is then reimaged one-to-one, by a 1.5-m-focal-length mirror, into a canister in

which the test specimen is mounted. The canister (fig. 9-18) is designed with suitable baffling so that the

laser beam can enter, but the spalled particles cannot escape. An air jet in front of the specimen deflects

the laser plume upward and allows the beam to reach the surface without significant absorption in the

plume.
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\
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£3
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Figure 9-17.-Experimental setup for spallation tests.
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Figure 9-18.- Spallation canister.

Typical spallation results are shown in figure 9-19. The total mass loss is determined by weigh-

ing the sample (3 cm square by 5.1 cm long) before and after exposure, and the spallation mass loss is

determined by collecting and weighing the particles in the bottom of the canister. At least three exposure
times are used so that the steady-state total mass loss and spallation rates can be obtained. Note that for

the data shown, 18.3% of the mass loss is by spallation at an intensity of 23 kW/cm 2. By repeating the

test at a variety of intensities, a correlation of spallation fraction as a function of intensity will be
developed. The calculated radiation history in flight will then be used in conjunction with the correlation

to determine the total mass loss by spallation over the complete heating pulse and over the entire
forebody heat shield.
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Figure 9-19.- Spallation results for carbon phenolic.

Because of the power limitations of the laser, the peak flight radiative rate cannot be simulated

on a spot larger than 1 cm by 1 cm. Use of such a small spot size results in a hole being bored in the end

of a square sample 3 cm by 3 cm in size, and may produce results that are unique to the test setup. To

check for scale effects, future work will involve tests with a square segmented mirror 2 cm on a side,

which will produce a square spot 2 cm on a side on the end of a square sample 2 cm on a side. Thus the

test sample will be fully enveloped in the beam in a better simulation of the flight situation. Because of
the power limitation, these tests will be limited to intensities of 10 kW/cm 2 or less. The results will be

compared with the 10-kW/cm 2 results with the 1-cm segmented mirror to see whether there are signifi-
cant differences between the two test techniques. Note that the intensity of 10 kW/cm 2, which can be

achieved with the 2-cm mirror, is a good simulation of the maximum radiative rate expected on the coni-
cal frustum of the entry probe.
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Code Validation

It has been noted that the computational studies that have been discussed push the limits of theo-

retical analysis, and that they were used to calculate material responses to environments that cannot be

simulated fully in any existing experimental facility. Therefore, it is very difficult to validate these
theoretical methods experimentally. The best efforts to do this to date were reported in references 58

and 59. We present here a very brief summary of some of the results presented in reference 59.

The data used for this code validation were obtained using the GPPF (ref. 54), wherein the equi-

molar mixture of hydrogen and helium gas was injected uniformly along the constricted arc (fig. 9-14),

and was heated to about 15,000 K, as noted previously. The facility operating conditions for the data

discussed below were as follows: arc power, 55 MW; arc current, 5330 A; mass flow rate, 0.118 kg/sec;

pressure, 5 atm.

The models used for the test were 4-cm-diam. flat-faced cylinders. The flat face was 7 cm from

the nozzle exit, and the exit was 7 cm in diameter. The heat flux to the models was measured using a

thin-shell calorimeter; the calorimeter was also 4 cm in diameter, but it had a 20-cm radius of curvature

on the front face. The models and calorimeter were mounted on separate rotating arms so that they could

be swung alternately to the same position of the arc stream, as described previously.

Absorbed heat flux data from this test are compared with heat fluxes computed bythe RASLE
code in figure 9-20. The calculated values generally fall within the estimated +10-MW/m 2 error bands
of the calorimeter data. The RASLE solutions were obtained using a nonablating boundary condition for

the tungsten surface of the calorimeter. The application of the RASLE code to these experimental con-

ditions was not direct, primarily because the RASLE code is based on hypersonic approximations and

the test Mach number was only 1.2. These approximations had to be modified for the subject analysis

without significantly modifying the structure of the RASLE code. It was found convenient to obtain

RASLE solutions for an equivalent sphere rather than the cylindrical models. From a parametric study
(ref. 59), it was found that a 4-cm-diam. cylinder is equivalent, in terms of stagnation-point heat-transfer

rate, to a spherical model with an 8-cm radius.

The response of the ablation models to the GPPF arc flow is shown in figure 9-21 for two

materials. For the computed curves RASLE was used for the flow-field analysis and CMA for the mate-

rial response. The agreement is good for the ATJS graphite, but the predicted recession is twice the
measured recession for the carbon phenolic. As for the Jupiter entry conditions, the predicted convective

heating was reduced to a negligible value by ablation products. The reason for the much better agree-
ment for ATJS graphite than for carbon phenolic is not clear. One reason may be that the material prop-

erties were better known for the ATJS graphite than for the carbon phenolic. The question of material

properties for carbon phenolic is under investigation.
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Consensus Benchmark Flow-Field Solutions

To provide a set of solutions as a standard for calibrating other codes, a matrix of flight condi-

tions for entry into the nominal Jovian atmosphere was specified, and forebody flow-field solutions were

obtained by the COLTS and RASLE codes. The probe was a 44.25°-half-angle sphere-cone; it is de-

scribed in reference 60. Two probe weights were studied: 290 kg and 310 kg. The results of the study

are shown for the 310-kg probe in terms of mass loss rate at various times in the entry trajectory by the

symbols in figure 9-22. It may be noted that there is consistently good agreement between COLTS and
RASLE, except near the peak mass-loss rates at 50.3 and 51.5 sec. Examination of these results by J. N.

Moss, W. E. Nicolet, A. Balakrishnan, W. C. Davy, M. J. Green, and J. T. Howe failed to resolve the

differences near peak mass loss. Therefore, a "consensus" curve was agreed on; it is shown by the solid

line in figure 9-22. The mass loss integrated over the trajectory is 101 kg. If the curve were drawn

through the RASLE results (the square symbols), the result would be an additional 3 kg (approximate)
of heat-shield mass. The integrated heat-shield mass loss is presented and discussed in references 60 and

61 for both the nominal and cool dense atmospheres.
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Figure 9-22.- 310-kg probe benchmark solution results: nominal Jovianatmosphere, nominal entry
angle.

The distribution of mass-loss rate about the body at 47, 50.3, and 54.1 sec is shown in fig-

ure 9-23, which was adopted from references 60 and 62. The mass-loss rate distribution is shown

nondimensionaUy, where local mass-loss rate was normalized by the product of instantaneous flight

velocity and atmospheric density. At 47 sec, both the integrated mass-loss rate (fig. 9-22) and the mass-

loss distribution about the body (fig. 9-23) are in good agreement. At 50.3 and 54.1 sec, both figures

show a generally higher mass-loss rate by RASLE-----especially on the conical frustum where most of the

probe mass resides.
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nominal atmosphere.

These consensus solutions had a quasi-steady-state ablation boundary condition. Moreover, by
prior agreement, the radiative boundary condition was that the surface absorbed all of the flux incident
upon it--a very severe condition.

In reference 61, the more severe surface heating-rate history derived from the RASLE flow-field

results (ref. 60) were input into the CMA code, which is a transient material-response code for a pyro-

lyzing ablating material of finite thickness wherein material properties are temperature-dependent. An

allowable bond-line temperature between the aeroshell and the heat shield was specified, and the

required heat-shield thickness distribution was determined. For the nominal atmosphere, safety margins

were added to account for uncertainties (such as spallation effects). Thus a heat-shield "design" from a
benchmark material code was produced (fig. 9-24). Similar results were obtained for the cool dense

atmosphere (without safety margins). The question of survivability of the nominal benchmark "design"

in the cool dense entry environment was assessed in reference 61. Results of that paper suggest that for a

thermochemically ablating heat shield with physical uncertainties that fall within the prescribed margin

allowances, the 310-kg probe would survive the nominal Jovian atmosphere. Moreover, there appears to

be a reasonable probability that the probe would survive off-nominal atmospheres without margin.
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Conclusions

A supporting research and technology effort related to the entry of the Galileo probe into the

Jovian atmosphere has been reported. Entry at various initial conditions into numerous model atmo-

spheres by probes of various size and mass has been studied experimentally and computationally to
determine both forebody and afterbody heating environments and forebody heat-shield requirements.

Two kinds of codes were used: (1) codes that use engineering correlations and (2) benchmark codes that

use basic modeled physical phenomena. Detailed comparisons of the benchmark flow-field codes have

been performed, and they show that the turbulence modeling of a hot gas about a relatively cool probe

that is massively ablating has important consequences and needs continued development. Ranking of
various turbulence models according to severity has been performed.

For the f'trst time in entry technology experience, both forebody and afterbody heating are

severe. For that reason, a second-generation benchmark code that computes the flow over the entire

probe and into the wake is being developed. The code uses very advanced computational fluid dynamic

concepts and techniques. Initial results have been obtained for flow about the entire Galileo probe

configuration, and some results have been obtained for flow of a reacting gas.

Experiments were performed in the GPPF to simulate probe flank heating levels, and with the

gasdynamic laser to simulate stagnation-region heating for several materials. Spallation was studied and

partially quantified in the gasdynamic laser. Efforts to validate the computer codes by tests in the GPPF

were performed for several materials.

For the "heavy" Galileo probe, a set of consensus benchmark flow-field solutions has been
obtained. Results that contributed to these solutions have been used in a benchmark material-response

code to assess the prospects for survivability of the probe during entry into the atmosphere of Jupiter.
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Theoveralleffort hasrevealedareasfor futureentry technology research that will lead to under-

standing of phenomena that are currendy uncertainly known and as a result are carried in the weight

margin. These include turbulence modeling and mechanical spallation in particular.
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CHAPTER 10

HYPERVELOCITY FLIGHT AT LOW DENSITY, NONEQUILIBRIUM FLOW

In figure 1-1 of chapter 1, near the center of the figure, a short double horizontal line at about

50-km altitude was labeled "thermochemical nonequilibrium." It was shown to illustrate that at high

altitudes where gaseous molecules, atoms, etc., are less dense, collisional processes occur at diminished

frequency. The practical significance is that the gas cap over a hypervelocity vehicle approaches thermo-

dynamic and chemical equilibrium at a finite rate--it does not occur instantaneously. For early hyper-

velocity flight (e.g., Apollo), it was not necessary to understand this nonequilibrium regime in any

detail--it was only necessary to be sure that a vehicle could safely pass through that high-altitude

domain to lower altitudes where most of the deceleration and aerodynamic heating occurs. Nevertheless,

we thought we understood the main features of the high-altitude flight--it was out of chemical equilib-

rium, and ways were devised to study flow fields that were relaxing chemically at a finite rate. However,
in this decade, Park (ref. 1) and others deduced that the flow field is out of equilibrium thermodynami-

cally as well. That is, the internal states of species are not equilibrated, and the gas may need to be

characterized by more than one temperature locally (a translational temperature), as well as vibrational,

rotational, and electronic temperatures. These temperatures equilibrate at finite rates that may need to be

determined. Currently, there is intense activity aimed at achieving an understanding of thermochemical

nonequilibrium because a new class of hypervelocity aeromaneuvering vehicles will function in that

high-altitude regime. That regime is depicted by the "u"-shaped area centered at about 9 km/sec in

figure 10-1, which may extend far to the right to include very high enthalpy hypervelocity flight on
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return from solar system missions as shown for the manned Mars return wherein the vehicle is captured

by a dip into the upper atmosphere, exits, and then rendezvous with another vehicle orbiting Earth. An

attempt to quantify the phenomena is shown by the solid lines labeled 1 cm, 10 cm, and 1 m. These lines

were inferred from figure 10 of reference 2. They represent experimental correlations of the distance

behind a normal shock wave required for the flow to equilibrate thermochemically and will be discussed

in more detail in Chapter 11. For example, for the blunt-drag-configured, aeroassist flight-experiment

vehicle being planned, the flow behind the bow shock tends to equilibrate in a distance of about 10 cm

near peak heating (the total shock standoff distance is about 20 em (ref. 3). For a lifting configuration,
the flow field is more complicated. Nevertheless, an extensive literature on aeroassisted space transfer

vehicles has been developed by the use of sophisticated approximate analysis. Such vehicles replace a

costly near-Earth propulsive maneuver by an aerodynamic maneuver in the upper atmosphere. They are
the key to economic utilization of Earth-moon space, the exploration of Mars, and other future space

missions. Nonequilibrium flow phenomena affect forces, moments, and heat transfer to vehicles. Some

discussion of these vehicle concepts will be made in the next chapter.

But in this chapter let us examine chemical nonequilibrium in a flowing gas in a simple way. The

coupling of chemical 1ate equations to the flow-field equations, the solutions which result, and some
useful notions will be illustrated. Importantly, all spatial variations in flow variables, thermodynamic

quantities, and chemical composition occur because the chemical reactions proceed at a finite rate.

The flow model chosen for the analysis is that of a normal shock moving at velocity U into qui-

escent CO2 at density p**.l It is like compressible flow in a constant-area duct (Chapter 1) wherein a

normal shock wave alters the thermodynamic and chemical state of the gas--this time the latter changes

at a finite rate. The corresponding flow field as seen by an observer traveling with the shock is shown in

figure 10-2.

CO 2 CHEMICAL REACTIONS
Ii

COUPLED TO FLOW

p, u, ni

SHOCK

Figure 10-2.- Flow of a compressible gas across a normal shock wave which leads to gaseous chemical
reactions at a finite rate.

pu = pooU = constant

Flow-Field Equations and Boundary Conditions

The equations describing the flow field behind the shock are (neglecting transport phenomena):

(1)

0ul t: ,2,_dx! - _xx

1As of this writing, the current model of the Mars or Venus atmosphere is about 95% CO2 and 5% N2 (ref. 4). In 1962 the

Mars atmosphere was considered to be less than 10% CO2 while that for Venus was of the order of 10% CO2 (ref. 5).
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u du + dh = 0 (3)

or, in the integrated form,

,,2
H = -----+ h = constant (4)

2

for the continuity, x-momentum, and energy equations, respectively, where x is the distance behind the
shock.

The enthalpy _f the mixture of species is

k

h(p, p, nl, n2 ..... ni0 = ]_ nihi
i=l

(5)

where ni is now the number of moles of species i per unit mass of fluid and hi is the enthalpy per

mole of species i, or

_0 T
hi = Cpi dT + hio (6)

where Cpi and hi0 are the specific heat at constant pressure and enthalpy of formation on a per-mole
basis.

The equation of state of the mixture is

k

p = pRT _','_ ni
i=1

(7)

where R is the universal gas constant per mole (1.98717×10-3 kcal/g mole K).

The boundary conditions of the flow equations and the chemical-rate equation are specified

immediately behind the shock and are at x = 0

p_

Ps
--=E (8)

Us = EU (9)

Ps = P_2(1 - e) (10)

(for a strong shock (p_ <<Ps)),
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2
_2 Us

hs = h_ + (11)
2 2

1

nl = nls = M-I-I' n2 = n3 = n4 = n5 = n6 = n7 = n8 = 0 (12)

(that is, CO2 passes the shock without reacting), eight species are considered, and Mi is the molecular

weight of species i.

For simple illustrative purposes, it is assumed that Cpi/[_ is constant, such that the combination

of boundary conditions given in equations (9)-(12) and the equation of state, equation (7), yields

This completes the boundary conditions behind the shock wave.

The Modified Flow-Field Equations

It is convenient to rearrange the flow-field equations as follows. Equation (5) can be written in
the differential form

8
_h _h 3h

i=l

(14)

which combined with equations (1)-(3) and (5) expressed as equation (6) yields

du

u

k

1 _ bh
-- dni

p(al_ap) .= ani

1 - u2 (Oh/_)p) - (1/p)
-(Oh/D0)

(15)

which can be written as
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du

dx

U

1 - pu2

P

k

E ni[(Cpi ]1_)- 1]
i=l

k

ni(Cpi/1_)
i=l

_dni k _p k dni
i=l dx E -idni E _ii_-

i=l R dx i=l

k

ni
i=l

A

Eni-- RTE ni--
i=l R i=1 R

(16)

where dni/dx will be expressed subsequently (eq. 28).

From kinetic theory, the ratio of specific heat to the universal gas constant can be written

Cp_Cv + 1 _ D + 2

2
(17)

where D _ the number of degrees of freedom of a rnplej_ule of species i. For monatomic gases D = 3
so gaat cp/R = 5/2; for diatomic gases D = 5 so that cp/R = 7/2; for triatomic gases D = 7 so that

cp/R = 9/2.

From statistical mechanics, full vibrational excitation adds I to the ratio cp/R for diatomic

species (refs. 6 and 7). For illustrative purposes it is assumed that Cpi/R is fully excited vibrationally.

Moreover, for the linear triatomic molecule its value is 7 according to reference 8. Electron excitation is

not considered here. Its effect on the thermodynamics of the problem is discussed in reference 9, and

will be mentioned subsequently. Its effect on reaction rates is currently being assessed, but is beyond the

scope of our present considerations. Thus for full vibrational excitation (where the error in hi at 5000 K
is from ref. 8):

Species, i CO2 CO 02 O C

A

Cpi
7 9/2 9/2 5/2 5/2

Error in h i
0.8% 3% 1% 2% --

at 5000 K

The set of differential equations with their boundary conditions describing the interrelated

chemical and flow processes in that part of the flow field behind the shock that is not in chemical equi-

librium is thus complete, and we turn our attention to the chemical reactions themselves and the rates at

which they proceed.

Chemical Reactions

Behind the shock wave, the reactions assumed for the dissociation, ionization, and recombina-

tion of C02 and its components arc (terminology is identified and discussed as follows):
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r (1)
kf1

1 CO2+ M _- CO +O + M (18)
kb 1

(2)
2 CO+M _--_C+O+M (19)

(5)

3 CO + M _- CO + + e- + M (20)

(3) (6)

4 O +M _ O + +e-+ M (21)

(4) (7) (8)

5 C + M ___ C ÷ + e- + M (22)

where species 1 through 8 are identified by numbers (1)-(8); r is the reaction number; kfr and kbr are its

forward and backward reaction rate coefficients, respectively; the ratio kfr/kbr is the equilibrium coeffi-

cient Kcr; Otri and _r i are the stoichiometric coefficients for species i for the reactants and products of
reaction r, respectively (unity everywhere here); and M is any collision partner. Although it may be

expected that electrons are more efficient than the large particles in producing ionizing reactions, no

attempt is made to distinguish between electrons and larger particles as collision partners 2 and

nM= n (23)

The rate at which reactions in equations (18)-(22) proceed to the right is characterized by the forward

reaction rate coefficient expressed either in the form given by collision theory

kfr-o(s-1)! _] /_TT]
(24)

where M* is the reduced molecular weight corresponding to a collision parmer M, and is

(1/Mi + 1/MM)'I; P is the sterric factor; Err is the activation energy for the forward reaction; A is
Avagadro's number; d is the average diameter of the colliding pair; s is the number of classical

2For argon, it is generally agreed that electron collision partners are important to the rate at which equilibrium is approached

behind shock waves, although there is little agreement as to the mechanism for initiating ionization (refs. 10-14).

For air at shock speeds up to 10 km/sec, ionizing processes listed in order of decreasing importance are atom-atom

collisions, photoionization, electron impact, atom-molecule, and molecule-molecule collisions according to reference 15.

However, the importance of electron impact increases with shock speed.

For carbon dioxide, although the ionization rate coefficients with electron collision parlners are conceivably an order of

magnitude larger than those with large particle collision parmers, we do not know either within an order of magnitude and

thus do not auempt to distinguish between them.
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squared terms of energy contributing to the reaction; and c_ is a constant. The corresponding Arrhenius
form of the reaction rate coefficient is

kfr = BfrTCtfr e-Eft/_T (25)

The backward reaction rate is included in the equilibrium coefficient 3 expressed in either of two forms

8

kfr - P H nibr'ictr'i= Bcr Toter e- (Ecr/l_T)
K_- kbr i=l

(26)

where the bar refers to equilibrium values, Ecr refers to energy, and kbr is the backward reaction rate
coefficient. Symbolically, for reaction r

8 kfr 8

Z 0_riXi _ Z [_riXi

i=l kbr i=l

(27)

Thus equations (1)-(6) are combined with equation (14) to yield equation (15), which can be

written in the form of equation (16), for which the chemical rate equation for the rth reaction is needed.

By use of equation (27) this can be formed as (refs. 6 and 16)

dni _ 1 Z (_r,i-Ctr,i)kf r (P ni)_tr'i--1---H (P ni)l_r' (28)
dx pu Kcr i=lr=l

which is used to solve equation (16).

If there are m types of atoms in addition to free electrons, (m + 1) of equation (28) can be

replaced by m statements of conservation of atoms (in this case carbon and oxygen) of the form (where

azi is the number of atoms z in species i)

8 8

Z azi ni = Z azinis
i=l i=1

(29)

plus one statement that the number of ions equals the number of electrons (only singly ionized species
are considered). In applying equation (29), we consider an atomic ion to be equivalent to one atom of

the appropriate species. It is noted that equation (29) can be differentiated to provide m values of

dni/dx for use in equation (16).

3The backward reaction rate is a misnomer for three body collisional backward reactions, especially in reaction 1, where the

reaction does not proceed in the backward direction in a straightforward manner (ref. 17). Nevertheless, Fay (ref. 18) uses an
equivalent reaction, 2CO + 02 --->2C02, while reference 19 uses the reaction CO + H20 --->CO2 + H2 to oxidize CO. But it
appears that the reaction for oxidizing CO is a branched chain reaction which is not yet defined (ref. 17). Fortunately for our
problem, the backward oxidation reaction for CO is not important, and our results are not affected significantly by our
approach.
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This completes the set of equations used to solve the nonequilibrium flow behind the shock
wave. It is instructive to have the equilibrium conditions which the nonequilibrium properties eventually

approach some distance behind the shock wave.

Equilibrium Conditions

The 13 equilibrium properties of interest (designated by a bar) include the flow velocity _; ther-

modynamic properties p, r, and T; and chemical concentrations n, nl • • • n8. They are obtained from
the simultaneous solution of the following 13 algebraic equations. By definition

3 = _ _i (30)
i=l

Statements of conservation of oxygen and carbon atoms are

and

n3 = 2nls-2nl -32-35 -36

rt4 = n 1s - nl - n2 -n5 -n7

The number of moles of electrons equals the number of moles of ions and therefore

3 8 = 3 5 + 3 6 + 3 7

The equation of state is

The strong shock relations give

P

= p_u(u- _)

-'o 1 ._2__2)= _ ni RT+
nlshl + 2- ( i=l

_ poou-
P

The remaining five equations will not be listed, but are simply equation (26) written for the five reac-

tions given in equations (18)-(22).

(31)

(32)

(33)

(34)

(35)

(36)

(37)
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Method of Solution

Solutions for the nonequilibrium flow field were obtained by numerical integration of the

differential equations, equations (2), (3), (16), (28), subject to boundary conditions, equations (9)-(12),

making use of equations (1), (7), and (13). The integration was performed numerically, making use of

the Adams-Moulton predictor-corrector variable-step integration scheme (ref. 20). Values of dissocia-

tion energy and some of the other physical constants employed in the analysis were either obtained or

estimated from information in references 21 and 22. The rate and equilibrium coefficients will be pre-
sented subsequently.

The set of 13 equilibrium equations (eqs. (30)-(34) plus the five equations, eq. (26), in which r

takes on the value 1-5), some of which are nonlinear and transcendental, were solved in a direct way by

the Newton-Raphson method (ref. 23, p. 213). In addition, the results were verified by the method of

tracing the locus of roots described in reference 24.

Chemical Kinetics

Reaction-rate coefficients- The estimated values of the constants in the forward reaction-rate

coefficients were obtained with the aid of collision theory and are listed in table 10-I in the Arrhenius

form (eq. (25)). As in references 9, 25, and 26, it has been assumed for present purposes that P = s = 1

in the forward reaction-rate coefficient expression (eq. (24)), and that the activation energy equals the

reaction energy. An equivalent assumption is that collision of pairs having total energy in a specific

degree of freedom (such as translation) equal to or greater than the reaction energy will result in a reac-

tion (ref. 16). The neglected effect that reaction rates tend to be lowered because not every such collision

results in a reaction (i.e., P is actually less than unity) is compensated to some extent by the neglected

effect that reaction rates tend to be raised because more than one degree of freedom may participate in
the reaction (i.e., s is actually greater than 1). For these reasons (which are discussed more fully in ref.

25) and for lack of experimental evidence, we estimate reaction rates in accord with the above

assumption, and the result appears in figure 10-3.

TABLE 10-I.- REACTION-RATE AND EQUILIBRIUM COEFFICIENT DATA (ref. 9)

r Reaction

1 co2 _ co + o

2 CO_C+O

3 CO _-- CO + + e-

4 O_O++e -

5 C_C++e -

Bfr,

cm 3

g mol sec Kaf_

6.955x1012

7.238x1012

7.238x1012

7.344×1012

7.895x1012

Efr,

k cal
(xfr

g mol

0.5 125.75

.5 256.17

.5 323.18

.5 314.05

.5 259.84

Bcr,

g tool

cm 3 K_

0.17141×1013

.17713x107

.41958x10 -4

.42160×10-10

.39181x10-6

-2.6294

-1.1106

.72788

1.9483

1.0415

Ec r ,

k cal

g mol

135.73

268.57

333.44

307.73

264.04
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Figure 10-3.- Reaction-rate coefficient estimates (ref. 9).

At a temperature of about 20,000 K, the rate coefficients of the various reactions exhibit rather

large overall differences (-102 for example). Since the colliding pairs (electrons excepted) do not differ

greatly in size or molecular weight, the large spread in the rate coefficients at low temperatures is

attributable to differences in the activation energy Err which appears as part of the exponent in

equation (25). At very high temperatures, however, the entire exponent Efr/RT is small so that dif-

ferences in activation energy are of diminishing importance and kf r - Taft (-T1/2 in accord with the

assumption s = 1). Thus at a very high temperature, the various reaction-rate coefficient estimates do
not differ greatly from one another.

Equilibrium estimates- The equilibrium coefficients were obtained by empirically fitting data
obtained from references 21 and 22 by use of the far right side of equation (26). The resulting values of
the parameters in equation (26) are shown in table 10-I, and the equilibrium coefficients themselves are

shown in figure 10-4.

Chemically Relaxing Row.Field Results

Prof'des of thermodynamic, kinematic, and chemical quantities in the nonequilibrium part of the

flow field behind the shock were obtained by integration of equations (2), (3), (16), and (28) subject to
their boundary conditions and with the use of the chemical rate coefficient estimates. The solution of the

flow-field equations is fully coupled to the chemical relaxation equations.
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Figure 10-4.- Equilibrium coefficients (ref. 9).

An illustrative solution for a high shock speed and specified ambient density (15 km/sec and

P,,dPo = 10-4, respectively) is shown in figure 10-5. In part (a), all quantities have been made

dimensionless with respect to their values immediately behind the shock wave. As chemical relaxation

proceeds (increasing x), temperature diminishes monotonically. On the other hand, particle velocity

first increases and then decreases while density varies in the opposite way with increasing distance

behind the shock wave. This behavior has been discussed in reference 25. The variation of pressure and

enthalpy in the flow field is very small, as would be expected from the appendix on flow-field

sensitivity estimates which follows.

The mole fraction profiles of the eight chemical species are shown in figure 10-5(b). It is seen

that CO2 vanishes a short distance behind the shock wave. Both CO and O rapidly increase in concen-
tration for a short distance behind the shock wave and then diminish because of further dissociation and

ionization processes. Electrons are the predominant species in the flow field for x greater than

0.5 mm. 4 Although the nonequilibrium electron concentration has overshot the equilibrium value, it

does approach that value when x is large. This behavior is observed in other examples and in refer-

ences 9, 25, and 26 as well. It is interesting to see that the concentration of atomic oxygen remains high

in much of the relaxation region.

4It should be noted that the electron concentration in the nonequilibrium profiles to be presented is probably slightly lower

than it should be because doubly ionizing reactions have been neglected. However, for the ambient conditions considered in
this analysis, doubly ionized species would tend to disappear as equilibrium is approached.
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Prordes for a lower shock speed (9 km/sec) at the same low ambient density (Po,/po = 10 -4) are
shown in figure 10-6. It is noted that the density is far from its equilibrium value 10 cm behind the

shock. The dominant species in most of the relaxation region is atomic oxygen. Interestingly, it achieves

an almost constant value only 3 mm behind the shock in spite of the fact that CO is still dissociating into

C and O. Thus the ionization of atomic oxygen keeps pace with the production of atomic oxygen

throughout most of the relaxation region. The concentration of electrons and ions is relatively small at
this lower shock speed. This figure may be compared with figure 5 of reference 26, in which ionization

reactions were neglected. The thermodynamic and flow-field structure is much the same in either case,

although the overall concentration of the nonionized species is higher in that reference, as would be
expected.
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A solution of a chemically relaxing flow field at much lower velocity is shown in figure 10-7

(from ref. 26). The first part shows the velocity and thermodynamic variation, while the second part
shows the chemical species concentrations which correspond. The chemical relaxation distance for this

example exceeds 10 cm. Again, pressure and static enthalpy were almost invariant, while temperature,
density, and flow velocity varied significantly. The variation of mole fraction of CO and O were identi-

cal because there is no ionization, and the equilibrium value of CO2 was essentially zero. The initial

slopes of density and velocity behind the shock tended to depart further from equilibrium before they
reversed themselves to approach the equilibrium values. The conditions which govern the initial slopes
of these variables are derived in reference 25. Additional solutions are shown in both references 9
and 26.
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Relaxation Distance

Results of a large number of examples can be summarized in terms of a chemical relaxation dis-

tance, the distance behind the shock wave at which the overall chemical relaxation has gone a given

fraction (or percentage) toward completion. The fraction of reaction completion is defined in terms of

the total change in the number of moles per unit mass occurring in the distance x divided by the total
change in number of moles per unit mass required to achieve chemical equilibrium and is
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In all of the examples that were studied, n, and thus rl, were monotonic throughout the relaxation region

in spite of the fact that ni is not monotonic for several species.

The relaxation distances for rl = 0.5, 0.8, and 0.9 were obtained. The distance for 50% reaction
completion is quite short, not more than 10-1 cm for the entire range of shock conditions studied (refs. 9

and 25). The distance for 80% reaction completion is roughly a decade higher than for 50% completion.
Finally, the relaxation distance for 90% reaction completion is quite large, ranging from 10 -2 to 102 cm

over the entire range of shock conditions, as shown in figure 10-8.

o
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Figure 10-8.- Relaxation distance for 90% reaction completion (ref. 9).

It is worth mentioning that these relaxation distances are not very sensitive to the reaction-rate

assumptions. It was noted in reference 25 that a two to three order of magnitude change in reaction rates

results in only a one order of magnitude change in relaxation distance.
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Concluding Remarks

The interdependent dissociative and ionizing chemical rate processes behind shock waves in car-

bon dioxide have been examined for shock speeds from 6 to 20 km/sec at ambient densities of 10 -2 to
10 -4 ratioed to standard Earth atmosphere density. Because of a lack of reaction-rate data for carbon

dioxide and its components, reaction-rate coefficients have been estimated with the aid of some simpli-
fying assumptions and collision theory. The effects of chemical relaxation on the flow field behind

normal shock waves have been studied by use of the coupled fluid flow and chemical rate equations.

Results have been presented for both the equilibrium and nonequilibrium regimes behind the
shock wave. At the higher speeds (15 km/sec), electrons are the predominant species in most of the

nonequilibrium chemical relaxation region. Atomic oxygen is the predominant species in the lower-

speed examples and is also present in high concentration at the higher speeds.

Equilibrium concentration of electrons is presented here in terms of mole fraction of the mixture

and in terms of number of electrons per unit volume as in reference 9. The equilibrium concentration

varies from about 5x1014 tO 5x1018 electrons/cm 3 for a shock speed of 9 km/sec at a density ratio of
10 -4 standard Earth atmosphere density to 20 km/sec at a density ratio of 10-2. Results are also
presented in the form of a chemical relaxation distance behind the shock wave.

The nonequilibrium results obtained are considered to be preliminary estimates for a number of

reasons. They are based on estimates of chemical reaction-rate coefficients. Indeed, it is not certain that
the reactions studied are the correct reactions. Not all of the conceivable reactions have been included in

the analysis. The equilibrium results are in a somewhat better situation in that they are independent of

any estimates of reaction rate coefficients. They are not influenced significantly by internal excitation
phenomena for the high shock speeds considered.

Interestingly enough, the study of reference 9 shows that the influence of the state of internal

excitation on most of the chemically relaxing flow field is small insofar as this influence is manifested

through the thermodynamics of the problem. However, it is possible that dissociation and ionization

processes may proceed more readily from excited states, in which case the internal state of excitation
would be important in the entire chemical relaxation region.

Reference 9 shows that there is a small part of the nonequilibrium flow field just behind the

shock wave in which the state of internal excitation of the various species has a significant influence on

the flow properties. This region is likely to be important to nonequilibrium radiation problems; thus a

knowledge of both the chemical and internal relaxation is important at high temperatures.

Knowledge of the behavior of these common chemical substances at elevated temperature is

meager in spite of the fact that they have long been important species in many combustion problems.

The behavior of these substances has acquired new significance relating to planetary entry problems.
There is much to be learned from both the macroscopic and the subatomic points of view.
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APPENDIX

FLOW-FIELD SENSITIVITY ESTIMATES

In the strict sense, all of the flow-field quantities p, u, p, h, and T and species concentration

vary in the reacting flow field behind the shock. Some of these quantities, however, will vary more than

others. The purposes of the following discussion is to show the relative variation of the quantities p, u,

p, and h in the flow field behind the shock.

At some distance x behind the shock, the ratio of local density to the density immediately

behind the shock is defined as g.

P__- g (A1)
Ps

Thus the fractional change in p from Ps is

P - Ps _ Ap _

Ps Ps
g 1 (A2)

The corresponding change in u is from equation (1)

Au 1
- 1 (A3)

Us g

Similarly, from equation (2) the change in p (noting that Ps = Poo_2 = psusU) is

_tlAp _ e - (A4)

Ps

where e = podps. Finally, the change in h if we assume that hoo <<hs and _2 >>Us

the integrated form of equation (3) is approximately

and make use of

(A5)

If e is of the order 10-1, equations (A-1)-(A-5) show that a significant change in density in the

relaxing flow behind the shock produces a significant change in velocity, but that pressure and static
enthalpy are relatively unaffected. This qualitative behavior can be inferred without defining the specific

relaxation process--which could be chemical, thermodynamic, or thermochemical. The process is

expressed through other relationships which involve the equation of state, rate expressions, etc.

It is useful to make these estimates because they highlight the main features of the results before

we have them. But more importantly, they sort out the most sensitive variables, density and fluid

velocity (and temperature), which are affected significantly by relaxation processes, but not static
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enthalpyandpressure.Thesenotionsarehelpful in devisingnumericalschemesto computerelaxing
flowsefficiently.Thustheinsensitivityof pressuremeansthatnumericalmethodsneednotbetailored
to allow for largepressureexcursions.Makingsensitivityestimatesis agoodhabitto acquire.Such
estimatesin advanceshouldinfluencethemethodology,andmaydeterminewhetheracomputedsolu-
tion is obtainedat all.
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CHAPTER 11

HYPERVELOCITY AEROMANEUVERING FLIGHT AT VERY HIGH ALTITUDES

In recent years, interest has developed in the use of vehicles that can transport payloads from one
orbit to another. Such vehicles could be space-based. The capability of such vehicles is greatly enhanced

if propulsive maneuvers near Earth can be replaced in part or almost entirely by a shallow dip into the

upper atmosphere where the maneuver is performed aerodynamically. Such vehicles are called aeroas-

sisted space transfer vehicles (ASTV), or by some, aeroassisted orbital transfer vehicles (AOTV).

Thus a payload returned by these vehicles from a distant orbit (geosynchronous orbit (GEO)), for

example, to a low Earth orbit (LEO) would experience an aerodynamic drag maneuver in the upper
atmosphere before skipping out to rendezvous with another object in a low Earth orbit. Or the ASTV

could be returning at hypervelocity from an orbit considerably farther than geosynchronous; from a

libration center (a gravitational null point in the Earth/moon system) which is at lunar distance from
Earth, or from a location outside the Earth/moon system altogether. Payloads may be enhanced greatly

(doubled or even more) by the use of the drag aeromaneuver in the upper atmosphere rather than by a

propulsive deceleration near Earth.

A second kind of aeromaneuver would transfer a payload from one orbit to a second orbit at a

different orbital-plane inclination angle. The corresponding maneuver would involve a lateral banked

turn which is performed using aerodynamic lift. Or there may be a combined lift and drag maneuver in

the upper atmosphere by aeromaneuvering space vehicles..

In a primarily drag-type aeromaneuver, the vehicle configuration would be large and blunt, like

an umbrella. Because of the blunt-bow shock wave, the heating to the vehicle would be radiative to a

large extent. But the turning aeromaneuver requires a lifting capability, and would be more of a slender-

winged configuration. Correspondingly, aerodynamic heating would tend to be high on the slender nose

and on the leading edges of wings and control surfaces. It would be primarily convective heating.

A third vehicle concept studied in recent years is ground-based, would fly into orbit (perhaps),

and eventually would return to land on Earth. It, too, would perform hypervelocity aeromaneuvers

which would have to be done at very high altitude because of the heating problem. The primary heating

may be on the ascent, but the technology of the lifting ASTV would be relevant to this concept at high
altitude.

This family of vehicle concepts requires extensive research to form the broad technology base of

a new generation of aerospace vehicles. It is necessary to understand real gas flow fields, aerodynamic
heating, improved reusable materials and structures, thermal protection systems, efficient aeromaneuver-

ing strategies, and guidance and control problems; and if the vehicle requires an air-breathing propulsion

system--engine, fuel, and engine-airframe integration problems need to be defined and solved. That is,

every relevant technology needs advancement.

Insofar as the ASTVs are concerned, some features of the flight environment can be assessed by

extrapolating our current technology base. Consider, for example, the atmospheric drag maneuver by a

blunt vehicle wherein radiative transfer is a dominant heating mechanism. We can infer the kinds of

problems that need to be addressed. Figure 11-1 (adapted from Howe, ref. 1) depicts the return of a vehi-
cle from GEO, and from a distance of five times GEO (5×GEO)--which is about 40% of the distance to
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Figure 11-1.- Aeroassisted orbital transfer from distant orbits.

the moon. The figure would be essentially the same if the lunar distance return were shown. The ordi-

nate is a log scale of altitude in meters, and the abscissa is the inertial speed relative to a rotating atmo-
sphere in kilometers per second. The vehicle leaves GEO (about 35,000-km altitude) and arrives at the

"top" of the atmosphere at an inertial speed of about 10 km/sec, decelerates by atmospheric drag to low

Earth orbital speed of about 7 km/sec, exits the atmosphere, and rendezvous with the Space Shuttle (for

example). The perigee in the atmosphere is at an altitude of about 80 km. Entry from 5×GEO or lunar

return would be about the same because Earth escape speed is about 12 km/sec.
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A SpaceShuttle(STS)entryis shownfor reference.Sincetheentryspeedof anSTSis about
7 to 8km/sec,weseethattheASTV entryis abouttwiceasenergeticastheShuttleentry(energyvaries
with thesquareof velocity).Moreover,sincetheASTV deceleratesat amuchhigheraltitudethanthe
Shuttle,theASTV residesin averyenergeticrarefiedenvironment.

Thetwo horizontallinescalled"quasi-continuumlimit" pertainto altitudesbelowwhichcontin-
uumtheorycanbeappliedwith minormodifications(ref. 2), especiallyto largeblunt objects.For the
10-mnoseradius,thataltitudeis 112km. Belowanaltitudeof 103km,continuumtheorymaybe
appliedwithoutmodification.Mostof thedecelerationandheatingoccursin thefull continuumregion
becausetheairmoleculesneedto bepresentto developsignificantaerodynamiceffects.

Someof therealgasphenomenathatshouldbec_nsideredareshownin thefigure.An important
family of linesof constantfree-streamenergyflux (p**U/2) in wattspersquarecentimeterareshownon
thefight. Theyvary inverselywith altitudein anexponentialmanner.Theyserveasan indexto the
severityof aerodynamicheatingandof thermal-protectionrequirements.Experiencehasshown(ref. 3)
thatmaximumheatingcanbeasmuchas10%of thefree-streamenergyflux. Thus,if a thermal-
protectionmaterialcanwithstand50W/cm2without theneedto berefurbished,theselinesindicatethat
flight belowan80-kmaltitudeis notadvisableunlessthereis asignificantimprovementin thermal-
protectionmaterials.Detailedcomputationsof heatingratesindicatethattheseestimatesareabout
correct.

Anotherimportantline on thefigure is labeledthe"ionization" threshold.Manymechanismsby
whichthehotgascapcanemit thermalradiationexist to thefight of the line. Indeed,thermalradiation
is thedominantheatingmechanismfor thebluntdragconfiguration.Moreover,theradiationis from air
thatis not in thermalor chemicalequilibrium,aswill beshown.Althoughvehicleshaveflown through
thisregionroutinely,thepeakheatingwasat loweraltitudesin aregimewheretheair is in equilibrium
behindthebowshockwave.Thusthetotalcontributionof nonequilibriumradiationtoApollo heating
wasabout1%andto theSpaceShuttleabout5%;but for thedrag-configuredASTV it isestimatedto be
about50%(or more).Park(refs.4 and5) hasexploredwaysto modelthephysical-chemicalphenomena
thatproducenonequilibriumradiation.

Aeroassistedspacetransfervehicleproblemshavebeenstudiedby approximatebuthighly
sophisticatedmethods.Configurationsfor bothhighdrag(lift/drag ratiosof 0.3)andhigh lift (L/D - 2)

have been defined that are stable, controllable, and of minimum weight (refs. 6, 7, and 8). Two config-

urations are shown schematically in figure 11-2. Each configuration can be placed into low Earth orbit

in a single Shuttle payload. Note that the drag configuration is large (27 m in diameter), and is very

blunt. It is not symmetrical, so that lateral aerodynamic forces can be generated to maneuver the vehicle

aerodynamically to some extent, to make trajectory corrections.

The lifting surface shown on the bottom of the figure is an early version (Davies and Park

(ref. 8)). A payload would be placed in the dead-air region, along with some propulsive capability.

The development of significant lift at high altitude is very difficult, so the lifting surface must be

very carefully designed to accomplish that. Although simple Newtonian theory provided the basic shape

shown, it was refined by applying rarefied viscous forces locally and integrating them over the entire

surface. The configuration shown was the best of several configurations studied, which all had a com-

mon dimension and payload. This shape was the only one which produced the necessary aerodynamic

stabilizing moments. Thus both a high-drag and a high-lift configuration appear to be the best candidates
for ASTVs. No real use for an intermediate configuration was found. A combination of moderate drag
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Figure 11-2.- ASTV configurations. (a) High-drag configuration. (b) High-lift surface.

and moderate lift does not appear to do anything well. Admittedly, these configurations appear

somewhat ugly, but in time they acquire an undefinable appeal.

Both structural and thermal-protection weights have been estimated for these configurations

(refs. 9 and 10). Moreover, clever flight strategies have been devised and mission capabilities were per-

formed. A few of the round-trip mission payloads for the drag configuration are shown in figure 11-3.

Although GEO is in the equatorial plane, other orbits are inclined to that, so that both an aerodynamic-

drag maneuver and a propulsive plane-change maneuver (far from Earth) were involved in the analysis.

Delivery (open bar), retrieval (shaded bar), and combined delivery-retrieval (solid bar) payloads for

round-trip missions from low Earth orbit (Shuttle-compatible) were examined. It is noteworthy that the

retrieval missions have a large payload capability which nonintuitively increases with distance in space.

Although it is not shown, about 23 tons can be retrieved from a libration center (at lunar distance) by a

vehicle which leaves the Space Shuttle weighing 30 tons (the Shuttle payload capacity). The retrieval
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time is less than 2 days. It may be advantageous to store space assets in space for retrieval in an emer-

gency-rather than to store them on the ground where they cannot be deployed, even in bad weather.

The many mission analyses revealed a number of nonintuitive advantageous results. Reduction

of aerodynamic loads and heating by use of multiple passes through the upper atmosphere has also been
examined. Excursions to other planets have been studied as well (refs. 11 and 12). The simultaneous use

of propulsion and aeromaneuvers has been considered (synergetic maneuvers).

For the drag configuration, an Aeroassist Flight Experiment (AFE) is being planned whereby a

highly instrumented one-third-scale model will be launched by the Space Shuttle, driven into the atmo-
sphere propulsively, perform the drag aeromaneuver, and skip out of the atmosphere to be retrieved by

the Space Shuttle. Figure 11-4 shows two candidate ASTV configurations for AFE. The configuration

on the right is the NASA Johnson Space Center (JSC) shape partially modified at the extreme diameter.

As shown at the bottom of the figure, models of these configurations were flown in the Ames Ballistic

Range Facility (by P. Intrieri). The resulting shadowgraphs show three things. First, the models are
stable (they fly forward without tumbling and tend to seek a fixed orientation). Second, the shock

waves and flow-field structure are visible to some extent. Third, the windows of the facility need to be

replaced.

It appears likely that the modified JSC configuration will be chosen for the flight test. The

radiometer experiment to be carried aboard the flight test vehicle is of special interest. The principle

investigator for the experiment is W. C. Davy of NASA Ames Research Center (ref. 13). Radiative

emission from the hot gas cap is especially interesting in the context of this monograph. Figure 11-5
shows a diagram of an ASTV with some shock-wave structure. The left side of the figure shows sche-

matic profiles of temperature, chemical species, and radiative emission along the forward stagnation

streamline. Immediately behind the bow shock, the gas is out of thermal equilibrium, and three tem-

peratures are shown to characterize the gas locally; the translational (or large-particle) temperature, a

vibrational temperature for diatomic species, and an electron temperature. If there are many diatomic
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Figure 11-4.- AFE candidate configurations.
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ENERGETIC FLIGHT AT HIGH ALTITUDE
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Figure 11-5.- Thermochemical nonequilibrium flow-field schematic.

species (02, N2, NO, and their ions), many vibrational temperatures may need to be used. Behind the

bow shock, air composition is atmospheric N2 and 02. These dissociate and ionize as flow proceeds

toward the body until they (like temperature) approach a thermochemical equilibrium state. The corre-

sponding radiative emission "overshoots" because of excessive temperature, excited chemical species,

and a nonequilibrium chemical composition. Again, as the flow proceeds toward the body, the radiation
tends toward a thermochemical equilibrium value. The extent of the thermochemical nonequilibrium

effect was estimated in figure 10-1 where the three curved lines labeled 1 cm, 10 cm, and 1 m indicate

the distance behind a normal shock wave required for the thermochemical state to approach within 10%

of the equilibrium value. The estimates were made by use of shock-tube experiments by Allen, Rose,

and Camm (ref. 14), correlated in figure 10 of that reference, which is reproduced in figure 11-6, where
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Figure l 1-6.- Observed time duration of liminous front and time to peak in air plotted versus shock

speed. The time t0.1, in the laboratory coordinate system, is taken to a point at which the radiation

intensity has decayed to a level 10% above equilibrium. Initial pressure is used as a scaling factor to

correlate data obtained at different values of poo. The solid curves are empirical fits. (Adapted from
ref. 14.)

the radiative emission overshoot of figure 11-5(c) appears schematically as the inset. Based on fig-

ure 11-6, if the estimates in figure 10-1 are related to a large, blunt, drag-configured ASTV, about 10 cm

of the flow behind the shock is not in thermochemical equilibrium at peak heating at an altitude of

80 km as was noted in Chapter 10.

Flight in this domain is not well understood. In the context of the formalism used in this text, the

extension to thermochemical nonequilibrium has been outlined in reference 15. Perhaps it is noteworthy

that under the heading "The Formal Kinetic Theory of Polyatomic Molecules," that reference has a

subheading, "Energy Interchange between Translational and Internal Motions is Difficult." The

treatment considers a two-temperature model related by what is essentially an additional "equation of
change" (see Chapter 4 of the present text). The transport expressions are also affected by the internal

motion of the molecules. Difficult though it may be, a self-consistent formalism is advantageous. Sig-

nificantly, the extension of the present formalism to include the effects of thermochemical nonequilib-

rium combines all fluid dynamic, physical, chemical, transport, radiative-transfer, and thermodynamic

processes in a set of nonlinear, coupled, partial differential-integro equations. The terms in these equa-

tions can be ranked in a self-consistent way that identifies the important terms and eliminates the myriad

terms that can be neglected, as was discussed in Chapter 4. The efforts to compute the many physical

and chemical coefficients are reduced correspondingly. And when all is done, one can say with some

confidence that this reduced set of equations is applicable and is self-consistent.
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At present,wecangetsomeestimateof the importanceof thermochemicalnonequilibriumfrom
thelinesmentionedin figure 10-1.For example,wemaysaythatfor themannedMarsreturnaerocap-
turemaneuver,theeffectsmaybenegligiblebecauselessthanacentimeterof thethick shocklayeris
affectednearpeakheating(seealsoref. 16).

Asidefrom thesimpleestimateswehavemadeof theboundarieswithin theflight domain
whereinthermochemicalnonequilibriumeffectsmaybesignificant(seefig. 10-1),amoredetailed
treatmentof thetopic is beyondthescopeof thepresentwork.Thereaderis referredto reference17,
whichdealswith someaspectsof theproblem.TheAFE flight experimentis expectedto increaseunder-
standingof hypervelocityflight atvery highaltitudes,andtheforcesandheatingthatoccurbecauseof
real gaseffects.

Finally, with respectto hypervelocitylifting configurations,flight at very high altitudes reduces
convective heating (to the leading edges of lifting and control surfaces because of rarefied gas effects),

which leads to concepts that can result in vehicles that do not have to be refurbished after each flight.

But although aerodynamic heating is diminished at high altitude, so is lifting capability. Figure 11-7

(private communication, M. E. Tauber, Ames Research Center, 1986) shows the degradation of the
lift/drag ratio above about 80 km (the perigee determined by materials that can withstand the heating

rates) for the Space Shuttle. The lifting ASTV shows some promise of improvement over the perfor-

mance shown, although not a great improvement. Clearly, there is a tradeoff between tolerable heating

and acceptable lift. At this writing, that tradeoff appears to allow up to a 40 ° low Earth orbital plane

change capability by aeromaneuvering. This is a remarkable capability--a propulsive capability of 60 °

orbital plane change requires about as much propulsion as it takes to launch from Earth to low Earth
orbit.

2.0

1.5

E 1.0

,_1

.5

0 I, I L 1 I

60 70 80 90 100 110

ALTITUDE, km

Figure 11-7.- Space Shuttle maximum lift/drag ratio variation (approximate).

For our purposes, we see that the real gas aerodynamic environment at hypervelocity opens a
new era of flow-field research. Mach number is relatively unimportant; it deals primarily with com-

pressibility effects of the gas. Velocity is very important; it deals with the energetics of the gas--
thermal, chemical, and physical effects associated with real gas behavior. These effects are only partially

understood, and at very high altitudes these effects become increasingly complicated.

Thus, hypervelocity flight, especially at high altitude, requires both computational and experi-

mental research. Computation must include more than configuration, momentum, simple energy rela-

tions, and an equation of state. It must include these and much more. We might envision the complexity

of solving a set of state, momentum, energy, diffusion, electric-charge conservation, finite-rate
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chemistry,thermalrelaxation,andelectrodynamicequationsthatarenonlinearandcoupledto one

another. We must acquire the basic physical and chemical inputs to these equations, including transport
phenomena; radiative properties; and physical, chemical, and thermal rate data. The development of

computational codes may proceed as shown in figure 11-8. The three columns are intended to indicate a

melding of computational fluid dynamic techniques, real gas aerothermodynamics, and physical and

chemical inputs.
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Figure 11-8.- Computational aerothermodynamic code development.

Moreover, hypervelocity simulation experimentally requires high-enthalpy research facilities.
Heating test air in a reservoir by chemical means is not adequate. Gas flow through a high-enthalpy

facility must be characterized and understood in detail. Moreover, computational developments must be

validated by experiment (as well as flight test--fig. 11-8).

In proceeding into these poorly understood areas, we must be very thoughtful. A continual

assessment of where we stand both computationaUy and experimentally is essential. ComputationaUy,

we must order the terms in the equations of change for configurations and flight conditions that are

appropriate. We must reexamine transport and transfer phenomena and realize that both are affected by

thermochemical rate processes. We must assess what problems are crucial to solve (some problems may

be interesting, but unimportant) and make sure there is a correspondence among computation, ground-

based tests, and flight tests. There must be a correspondence between codes and experiments----or we

may be attempting to validate codes that are not valid. Experimentally, we must carefully consider the

limits of ground-based experiments. A test in a wind tunnel in which the test gas is near liquifaction may
be importandy different from flight at the same Mach number. Problems abound. But we are on the

threshold. The possibilities of space utilization for science, commerce, and national and international

goals are enormous.
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